
Accepted Manuscript

Query Point Visibility Computation in Polygons with Holes

Alireza Zarei, Mohammad Ghodsi

PII: S0925-7721(07)00034-X
DOI: 10.1016/j.comgeo.2007.02.005
Reference: COMGEO 890

To appear in: Computational Geometry: Theory and Applications

Received date: 11 July 2005
Revised date: 1 October 2006
Accepted date: 2 February 2007

Please cite this article as: A. Zarei, M. Ghodsi, Query Point Visibility Computation in Polygons with
Holes, Computational Geometry: Theory and Applications (2007), doi: 10.1016/j.comgeo.2007.02.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.comgeo.2007.02.005

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Query Point Visibility Computation

in Polygons with Holes∗

Alireza Zarei† Mohammad Ghodsi‡

Abstract

In this paper, we consider the problem of computing the visibility of a query
point inside polygons with holes. The goal is to perform this computation efficiently
per query considering the cost of the preprocessing phase. Our algorithm is based
on solutions in [13] and [2] proposed for simple polygons. In our solution, the
preprocessing is done in time O(n3 log n) to construct a data structure of size O(n3).
It is then possible to report the visibility polygon of any query point q in time
O((1+h′) log n+ |V (q)|), in which n and h are the number of the vertices and holes
of the polygon respectively, |V (q)| is the size of the visibility polygon of q, and h′ is
an output and preprocessing sensitive parameter of at most min(h, |V (q)|). This is
claimed to be the best query-time result on this problem so far.

Keywords: visibility polygon, visibility decomposition, polygon with holes

1 Introduction

Two points inside a polygon are visible from each other if their connecting segment remains
completely inside the polygon. The visibility polygon of a point q, called V (q), in a
polygon P is defined as the set of points in P that are visible from q. The problem of
finding V (q) of a point q has been considered for two decades. For simple polygons, linear
time optimal algorithms have been proposed [5, 10, 8, 4]. For polygons with holes, the
worst case optimal algorithms in O(n logn) time were presented in [1] and [17]. This was
later improved to O(n + h log h) in [6].

The query version of this problem in polygons with holes has been considered by few.
The visibility complex and visibility decomposition are two methods of performing the
preprocessing step. The visibility complex was first presented in [14], in which V (q) of
any query point q can be reported in time O(|V (q)| logn) with O(n log n) preprocessing
time and O(n) space. This is the best result so far for polygon with holes. In comparison,
our method uses more preprocessing time and space, but the query is performed more
efficiently in most cases.

∗A preliminary version of this paper appeared in proceedings of the 21st Annual Symposium on
Computational Geometry, Pisa, Italy, 2005 [18].

†Computer Engineering Department, Sharif University of Technology, Tehran, Iran
(zarei@mehr.sharif.edu). This work has been partly supported by Iran Telecommunication and
Research Center(ITRC).

‡Computer Engineering Department, Sharif University of Technology, Tehran, Iran and IPM School of
Computer Science, Niavaran, Tehran, Iran (ghodsi@sharif.edu). This work has been partly supported
by a grant from IPM school of CS (No. CS1385-2-01)

1

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
The notion of visibility decomposition is to decompose the polygon into “visibility

regions” so that all points in a single such region have equivalent visibility polygons.
Two visibility polygons are equivalent if they both are composed of the same sequence
of vertices and edges from the underlying polygon. In the visibility decomposition, the
visibility regions are determined in the preprocessing phase and their visibility polygons
are computed and maintained in a proper data structure. For any query point q, V (q)
can then be obtained by refining the visibility polygon of the region that contains q.

Using visibility decomposition in a simple polygon with n vertices, V (q) can be re-
ported in time O(log n + |V (q)|) by O(n3 log n) of preprocessing time and O(n3) space
[9, 13]. Another improvement to this result was done in [2] where the preprocessing time
and space were reduced to O(n2 log n) and O(n2) respectively, at the expense of more
query time of O(log2 n + |V (q)|).

In this paper, we apply the visibility decomposition to polygons with holes with some
extensions. In an overall view, our algorithm adds some new diagonals to our polygon
(called cut-diagonals) so that the polygon can be unfolded along these diagonals and
converted into a simple polygon. Then, we use an existing algorithm on the simple
polygons (one of [9] or [13]) to compute a preliminary version of the V (q), denoted as Vs(q).
Vs(q) is then refined to find the final V (q). Performing this refinement step efficiently is
the main contribution of this paper.

The preprocessing needed for the refinement step is done by constructing a data struc-
ture for each cut-diagonal so that the visible portions of the polygon, from an arbitrary
query point, through that cut-diagonal can be obtained efficiently. Having these struc-
tures, any segment of the cut-diagonals which appears in Vs(q) is replaced by the portions
of the polygon that are visible through that segment. This process continues until no
cut-diagonal is remained unrefined in Vs(q).

For a polygon of total n vertices and h holes, our algorithm needs the preprocessing
time of O(n3 log n) and space of O(n3). Any query can be handled in time O((1 +
h′) log(n) + |V (q)|) in which h′ is an output and preprocessing sensitive parameter of at
most min(h, |V (q)|).

In the rest of this paper and in Section 2, the visibility decomposition will be applied
to polygons with holes and its time and space complexities are analyzed. In Section 3,
the new algorithm will be presented. This algorithm is later improved in Section 4.

2 Visibility Decomposition

Let P be a polygon with h holes H1, H2, · · · , Hh. Also let q be the query point for
which the visibility polygon V (q) is to be computed. A visibility decomposition of P (or
v-decomposition(P)), is to partition P into a set of smaller visibility regions R, called
v-regions, such that for each region A ∈ R, the same sequence of vertices and edges of P,
called A’s visibility sequence (or v-sequence(A)), are visible from any point in A.

To construct a v-decomposition(P), we first identify the boundary segments of its
regions R and then construct a subdivision from these segments. The boundary segments
are either the edges of P, or segments that are called windows. As shown in Figure 1,
a window uu′ is an extension of the segment between two mutually visible vertices u
and v. The points below the window uu′ are not visible from v, while the upper points
are. It is easy to prove that no other kinds of segments are involved in construction
of the v-decomposition. More details on the properties of such a decomposition can be
found in [13] and [2]. In these papers, the v-decomposition is only defined on simple
polygons. However, it is straightforward to apply this notion on polygons with holes too.

2

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

v u
u′

Figure 1: uu′ is a window of the polygon.

c

a

d

b

Figure 2: A polygon with O(n4) v-regions and sinks.

Furthermore, some proved properties are also valid for the general polygons. The main
properties of this decomposition are as follows: the v-regions are convex, v-sequences of
two adjacent v-regions differ in only one vertex, and all points of a v-region have equivalent
visibility polygons.

Lemma 1. The number of the v-regions of a polygon with holes P is O(n4) and this
bound is tight.

Proof. Each vertex of P can be an endpoint of at most n different windows. Hence, the
number of all windows is O(n2). Any two windows can intersect which will lead to at
most O(n4) v-regions. This bound is tight as shown in Figure 2. �

It is easy to see that the v-sequences of two adjacent v-regions in a simple polygon differ
only in a single vertex which is visible from the points of one region and is invisible from the
other. This fact helps reduce the space complexity of maintaining the v-sequences of the v-
regions in simple polygons. This is done by defining the sink regions. A region is sink if the
size of its v-sequence is smaller than than that for any of its adjacent regions. It is therefore
sufficient to only maintain the v-sequences of the sinks, from which the v-sequences of all
other regions can be computed. This is done by constructing a directed dual graph over
the v-regions and maintaining the difference between v-sequences of adjacent v-regions as
the label of the edges of this graph [9, 13].

In a simple polygon, there are O(n2) sinks. This reduces the space requirement of
v-decomposition of a simple polygon to O(n3). Unfortunately, the above property does
not hold for polygons with holes.

Lemma 2. The space complexity of maintaining the v-sequences of the regions in a
polygon with holes is O(n5).

3

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

B CA

D E

q

q q q

q

Figure 3: Computing V (q) inside a polygon with holes: (A) The original polygon P,
(B) The cut-diagonals to produce a simple polygon Ps, (C) The visibility polygon Vs(q)
targeted at Ps, (D) Extra segments of P viewed from q through the cut-diagonals, and
(E) The final V (q) in P

.

Proof. This bound is trivially true, because the number of v-regions is O(n4) and any
one of these regions can have a v-sequence of size O(n). On the other hand, Figure 2 shows
a polygon with O(n4) sink regions each with v-sequences of size O(n). Along each edge
of a region, like abcd in this figure, a vertex is visible which is invisible inside that region.
Hence, getting out of this region from each side, increases the v-sequence. Therefore,
any one of the v-regions, like abcd, contains at least one sink. This leads to the space
complexity of O(n5), since there are O(n4) sink regions. �

By computing the v-regions R of P and maintaining their v-sequences, V (q) of an
arbitrary point q inside P can be computed as follows: A point location structure is built
over the v-regions. From this, the region r(q) containing q can be found in time O(log n).
The v-sequence(r(q))is then traced and refined to exactly compute V (q). This refinement
takes a linear time in terms of the size of V (q) [13]. Therefore,

Theorem 1. Using O(n5 log n) time to preprocess a polygon P and maintaining a data
structure of size O(n5), it is possible to report V (q) in time O(logn + |V (q)|).

Proof. We first compute the V (r) for each vertex r of P [17]. All windows can then
be found in time O(n2 log n). The v-decomposition and its dual graph can be constructed
in time O(n4 log n) [3]. The point location structure on the v-decomposition can be
constructed in time O(n4 log n) [7, 11, 15, 16]. Since, there can be O(n4) sinks, computing
the v-sequences takes O(n5 log n) time and the size of any one of these v-sequences can
be O(n). Hence, the total preprocessing time is O(n5 log n) and the size of the required
data structure is O(n5). V (q) can be found in time O(log n + |V (q)|) as described above.
�

3 The Proposed Algorithm

Clearly, the time and space complexities of the previous algorithm is too high and it is
not acceptable in all applications. In this section we present a new algorithm that needs
less preprocessing time and space at expense of more cost of query time.

4

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
The first step of this algorithm is to convert the initial polygon P into a simple

polygon Ps. This is done by inserting some diagonals, known as cut-diagonals, with an
unfold process over these cuts. Vs(q) in Ps is computed using an algorithm in [13, 9].
After a refinement process, the final V (q) is computed from Vs(q). A See-Through

procedure, to be described in Subsection 3.2, performs this refinement process.
Figure 3 depicts an example of the algorithm. The original polygon P and its simple

version Ps are shown in parts (A) and (B) respectively. V (q) in Ps, denoted by Vs(q) is
computed as shown in part (C). There are portions in P that are visible from q through
the cut-diagonals of Vs(q) which are shown in part (D). These portions are computed
(recursively) by the See-Through algorithm to replace the cut-diagonals of Vs(q) which
leads to the final V (q), as shown in part (E).

The details of the algorithm is described in the following subsections.

3.1 Creating a simple polygon from P

We produce a simple polygon Ps from P by eliminating its holes. One hole, say H , in P
can be eliminated by adding a cut-diagonals connecting a vertex of H to a vertex of P in
its outer boundary. Cutting P along these diagonals produces another polygon in which
H is no longer a hole. We continue this process on this new polygon to eliminate all holes.
A cut-diagonal should lie completely inside P and should not intersect any other holes.
This can be enforced if we eliminate the leftmost hole first; i.e., the hole with the smallest
x-coordinate of its leftmost corner.

For P with total of n vertices and h holes, Ps will have n+2h vertices. We know that
the upper bound of h is �n−3

3
�. Hence, the number of the vertices of Ps is also O(n).

The conversion algorithm described above can be done by first triangulating the poly-
gon and then selecting the proper cut-diagonals, which can be done in O(n logn) [12].

3.2 The visibility through cut-diagonals

As mentioned before, an important step in our approach is the See-Through algorithm
that updates the Vs(q) on Ps. This step finds new segments of edges in P which are
visible from q through the cut-diagonals. We use the idea presented in [2], which shows
that in a simple polygon P of size n and a diagonal that cuts P into two parts, L and
R, one can use an O(n2 log n) preprocessing time algorithm to construct a data structure
of size O(n2) so that, for any query point q ∈ R, the partial visibility VL(q) through the
diagonal can be reported in O(log n + |VL(q)|) time. This is also true when a portion of
the diagonal is visible to q and that portion is known.

This result can also be used for our purpose with a simple justification. Assume that
P has only one hole Hi which has been eliminated by one cut-diagonal u1u2, as shown in
Figure 4. For any query point q, we intend to find the set of segments of edges in P that
are visible from q through u1u2. Continuing u1u2 through Hi will lead to another segment
v1v2 such that v1 is on Hi and v2 is the first encounter of this segment with the boundary
of P. Now, suppose that the cut-diagonal u1u2 is replaced by v1v2. Obviously, cutting
P along v1v2 (instead of along u1u2) will produce another simple polygon, called P ′

Hi
, for

which u1u2 is an internal diagonal. We can now use the method in [2] to preprocess P ′

Hi

and build an appropriate data structure so that for any query point q, we can find the
segments of P ′

Hi
that are visible from q through u1u2. These segments are denoted as

VHi
(q). Since, no parts of v1v2 is visible from q through u1u2, VHi

(q) is the set of segments
we are looking for. We denote this method by See-Through(Hi).

5

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

H

u1

u2

v1

v2

Figure 4: The imaginary replacement of u1u2 by v1v2 in See-Through(H).

This algorithm can be extended to more holes by performing See-Through(Hi) once
for each Hi assuming that P has effectively been cut along the cut-diagonals of other holes,
which leads to a polygon with only one hole Hi. Therefore, we have h data structures
resulted from these preprocessing steps. Given the query point, the extra segments of P
visible from q through all the cut-diagonals is found by recursively using See-Through

for each cut-diagonal appearing somewhere in Vs(q).

3.3 The algorithm

The preprocessing phase of the algorithm is done as follows:

a Add all cut-diagonals to produce the simple polygon Ps, as described in Subsection
3.1.

b Preprocess Ps and create the data structure so that Vs(q) of any arbitrary query
point q in Ps can efficiently be reported. This step is done as [13]; a simple polygon
P can be preprocessed in O(n3 log n) time and O(n3) space such that given an
arbitrary query point q inside the polygon, O(log n + |V (q)|) time is sufficient to
recover V (q).

c For each hole, Hi, perform See-Through(Hi) to preprocess the polygon, so that
for any query point q, VHi

(q) can be computed efficiently.

Doing the above preprocessing steps, V (q) of any query point q is computed as follows.
The data structure built at step (b) of the preprocessing phase is used to find Vs(q), the
set of segments viewed by q in Ps. Suppose that a segment u′v′ of a cut-diagonal uv
associated with a hole Hi is a part of Vs(q). Since the endpoints of u′v′ are known, the
preprocessing of step (c) is used to find VHi

(q), the extra segments viewed through u′v′.
The segment u′v′ in Vs(q) is then replaced by VHi

(q). This is continued for any such
segments in Vs(q), and is finished without encountering any loops, due to the nature of
visibility. What remains at the end is V (q), and this is easy to prove. The reason is that
any visible segment is either visible directly or through some cut-diagonals which is found
in both cases.

Lemma 3. The preprocessing time and space complexities of the algorithm are O(n3 log n)
and O(n3), respectively.

Proof. Time complexity of the preprocessing of step (a), as described in Subsection
3.1, is O(n logn). Also, the resulting polygon Ps has O(n) vertices. The time and space
complexities of step (b) are O(n3 log n) and O(n3), respectively [13].

6

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

q

e1 e2

Figure 5: A polygon with a tight bound of h′.

As described in Subsection 3.2, the preprocessing time for any cut-diagonal is of size
O(n2 log n) and the size of its data structure is O(n2). There are at most O(n) such
diagonals in P, one for each hole. Thus, the total preprocessing time to construct the
cut-diagonal data structures is O(n3 log n) and they require O(n3) space. Therefore, the
total preprocessing time of the algorithm is O(n3 log n) and the prepared data structures
require O(n3) space. �

Lemma 4. The query time to report V (q) is O(log n + h′ log n + h′ + |V (q)|) where h′ is
the number of cut-diagonals appearing in Vs(q) during the algorithm.

Proof. A point location of time O(log n) is done to find the location of q in Ps and
Vs(q) can be built in O(|Vs(q)| time. For any one of the h′ cut-diagonals appearing in
Vs(q), a point location of size O(logn) is required to run the See-Through algorithm to
find VHi

(q). The cut-diagonal is then substituted in Vs(q) by VHi
(q) in O(|VHi

(q)|) time.
The number of the edges that appear in the initial Vs(q) and all VHi

(q)’s is the size of the
final visibility polygon V (q) plus the number of the cut-diagonals appeared in Vs(q) and
then removed, which is h′. �

Lemma 5. The upper bound of h′ is O(h2) and this bound is tight.

Proof. The cut-diagonals do not intersect each other except at their end-points.
Therefore, if a query point q sees a cut-diagonal l through another cut-diagonal l′, then it
is impossible for q to see l′ through l. Also, only a single segment of another cut-diagonal
can directly be seen from a query point through another cut-diagonal. By directly we
mean that there is no other intermediary cut-diagonals between them. Hence, the upper
bound of h′ is O(h2). Figure 5 shows a sample with tight bound of h′. �

The value of h′ for a query point depends on the position of the point and the cut-
diagonals, and the upper bound of h′ is reached in special cases. However, h is O(n) and
therefore, the upper bound of h′ is O(n2), which theoretically is too weak. In the next
section, we will improve the algorithm and overcome this weakness. This improvement
reduces the upper bound of h′ to min(h, |V (q)|) without increasing the preprocessing time
and space complexities.

4 Improving the Algorithm

As shown in Figure 5, in some cases, the process of a cut-diagonal e1 (i.e., See-Through(e1))
does not directly change the final visibility polygon; the algorithm takes useless action on
e1 and moves one step further to another cut-diagonal, like e2. It would have obtained
the same result, if it had skipped e1 and started from e2. We will show that the upper

7

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

l2
γ

δ
θ

e
q

u
l3 l1

v

β

α

Figure 6: The cut-diagonal e is q-ineffective for any q in the gray region shown.

bound of h′ occurs only when there are many of these cases. If we preprocess to skip these
ineffective cases, the upper bound of h′ is shown to reduce effectively. For this purpose,
we prepare another data structure by which these ineffective intermediate cut-diagonals
can be skipped. A cut-diagonal e is called q-ineffective if processing e only replaces a
segment of another cut-diagonal with that in e. Otherwise, e is q-effective. In Figure 6,
processing e is equivalent to substituting it with another cut-diagonal l2 and therefore it
is q-ineffective (for the shown q).

As shown in Figure 6, a query point q, views a portion of a cut-diagonal l1 through an
angle α, which is constrained by two reflex vertices. These vertices may be the endpoints
of l1 or reflex vertices of P that lie between q and l1. In this figure, u and v are the reflex
vertices associated with q and l1.

In our algorithm, l1 is in Vs(q) (actually, a segment of l1 is) which must be replaced by
applying See-Through. This will replace l1 by another cut-diagonal e. Applying See-

Through on e will further replace e by another cut-diagonal l2. Finally, See-Through

on l2 replaces l2 by l3 and an edge of P. Therefore, we could have started with l2 as if l1
and e never existed. This is true for all points q in the polygon whose visibility angle is
bounded by u and v and the lines qu and qv extend within angles γ and θ, respectively.
The region containing these points is shown in gray in Figure 6.

To ignore ineffective cut-diagonals, for any pair of reflex vertices, a data structure is
maintained so that, for any query point q, it efficiently determines the first q-effective cut-
diagonal. For each reflex vertex v, we first compute the different angular ranges around v
through which an observer sees different segments of P. Parameters δ and θ are examples
of such ranges for reflex vertex v in Figure 6. These ranges are produced by connecting v
to the vertices of P that are visible from it. These ranges produce a radial decomposition
of P around v which is referred to as RDv. To avoid degenerate cases, we assume that no
three vertices of P are collinear.

For each pair of reflex vertices u and v, another data structure, denoted as VRu,v

(for Visibility Ranges), is built over these vertices’ radial decompositions. In this data
structure, VRu,v(α, β) is the first effective cut-diagonal to all points whose lines of sight
lie within the ranges α of u and β of v. For each (α, β), so that α and β are two angular
ranges of RDu and RDv respectively, VRu,v(α, β) is computed and maintained.

These data structures are prepared in the preprocessing phase. For any query point q
that sees a cut-diagonal through the reflex vertices u and v, we compute the ranges α and β
which respectively are the ranges in which the extensions qu and qv lie. Having (α, β), its
associated q-effective cut-diagonal, VRu,v(α, β), is found from VRu,v and reported as the
first q-effective cut-diagonal, which must be processed by the See-Through procedure.

Clearly, P can have O(n) reflex vertices and the size of RDv for any reflex vertex v can
be O(n). Hence, there can be O(n2) pairs of reflex vertices u and v for which VRu,v must
be maintained. Naively, according to the size of RD, any one of the VR data structures

8

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

t′

q

uv

i

i′

t

t′

j

j′

s′

i

i′

v′ j

j′
u′

l

s

s

Figure 7: Only O(n) entries of VRu,v are not empty.

can be of size O(n2), and thus, the total size of VR’s is O(n4).
In the next subsection, we prove that maintaining the O(n) entries of VRu,v is sufficient

to find VRu,v(α, β) for any values of α and β. So, the total space requirement of these
structures is reduced to O(n3).

4.1 Space complexity of VRu,v

Assume that a query point q sees a cut-diagonal l whose visibility is limited by reflex
vertices u and v and the supporting lines of qu and qv cross through α and β ranges of
RDu and RDv, respectively. According to the definition of VRu,v, the value of VRu,v(α, β),
for some values of α and β is equal to l itself and it is not necessary to store these entries of
VRu,v. In addition, qu and qv do not intersect each other and whenever they cross through
the α and β ranges, these ranges must be divergent. By divergent we means that the lower
bounding line of the right angle does not intersect the upper bounding line of the other.
Two ranges are either divergent or convergent. Therefore, the entries of VRu,v(α, β) for
convergent values of α and β are not important and thus are not maintained. Moreover,
the values of some entries can be derived from the values of other entries and thus, it is
not required to maintain them in VRu,v. These entries are specified in the second option
of the proof of the next lemma.

Lemma 6. It is sufficient to maintain O(n) entries of VRu,v. Other entries can be
obtained from them. Therefore, the size of VRu,v for any pair of reflex vertices is O(n).

Proof. Consider the reflex vertices u and v for which VRu,v is to be constructed. If
the segment uv intersects P, then it is impossible for u and v to be the bounding vertices
for the vision of a query point. Therefore, it is not required to maintain VRu,v in such
situations. So, we assume that this segment is contained completely inside P. The RD
ranges of u and v are considered in counter clockwise order and are nominated according
to Figure 7. According to this nomination, the range i of vertex u is bounded from above
by segment ui, in which i is a vertex of P. However, RDu has such ranges only for those
vertices of P which are visible to u.

Assume that the entry VRu,v(i, j) is not empty and its value is l. This means that
for any query point q, that qu and qv extend within the i and j ranges of RDu and RDv,
respectively, all of the cut-diagonals that lie between l and uv are q-ineffective.

In addition, assume that i and j are the locally farthest apart so that there is no range
i′ of RDu before i with nonempty entry of VRu,v(i

′, j) and no range j′ of RDv after j with
nonempty entry of VRu,v(i, j

′). These assumptions lead to the following conclusions:

1. The region uu′v′v does not contain any vertex of P and has no intersection with
edges of P. This is a trivial result of the existence of l as the value of VRu,v(i, j).

9

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
2. For any range s of v lying before j and any range t′ of u that exists after i such

that s and t′ are not convergent, VRu,v(t
′, s) is equal to l or another cut-diagonal

l′ that lies farther than l from uv. If the value of this entry of VRu,v is equal to
l, then there is no need to be maintained and can be induced from the value of
VRu,v(i, j). We do not maintain such unnecessary entries in VRu,v and leave them
empty. When we search the value of VRu,v(α, β) for nonconvergent α and β, the
value of VRu,v(i, j) is returned in which i is the greatest range of u lying before α,
j is the smallest range of v lying after β, and VRu,v(i, j) exists.

3. For any range s before j and ranges t and t′ before and after range i respectively,
only one of the VRu,v(t, s) and VRu,v(t

′, s) can be nonempty. The reason is that
the entry VRu,v(t

′, s) can be nonempty only if s exists on the right side of the range
i (see Figure 7). If the entry VRu,v(t, s) is also nonempty with value l′, which is
distinct from l, because of the maximality of l, then l and l′ must intersect or the
right end-point of l, that is a vertex of P, must exist between l′ and uv. However,
none of these conditions is possible.

4. For any range t′ after i and ranges s and s′ before and after range j respectively,
only one of the VRu,v(t

′, s) and VRu,v(t
′, s′) can be nonempty. The proof is the same

as above.

5. For any pair of ranges i and i′ of u there is at most one range j of v such that both
of VRu,v(i, j) and VRu,v(i

′, j) are nonempty. This is a trivial result of the above two
items.

The last conclusion implies that there are at most 2n nonempty entries in VRu,v and
thus the lemma is correct. �

Therefore, we can maintain the necessary entries of VRu,v in a data structure of size
O(n) from which the values of VRu,v(α, β) for any α and β can be obtained. In the next
subsection, we will describe how to construct this structure and how it can affect the
efficiency of the proposed algorithm.

4.2 Building VRu,v

According to Figure 8, assume that a view point lies on vertex u and its vision angle is
limited from angle α to α′. We define VRu(α, α′) to be the first effective cut-diagonal to
this view point.

Consider a query point q (see Figure 8) which sees within the reflex vertices u and v
and therefore, its vision angle is limited from angle α to angle β. Assume that β ′ is the
greatest visibility range of vertex v with an endpoint i that lies before the line l, so that
there is no vertex in the vui′ region. Moreover, assume that α′ is the smallest visibility
range of u with an endpoint j that lies after the line l′, such that there is no vertex in the
vuj ′ region (see Figure 8).

Lemma 7. If none of VRu(α, α′) and VRv(β
′, β) intersect vu, VRu,v(α, β) is the same

as VRu(α, α′) and VRv(β
′, β).

Proof. We first prove the equality of VRu(α, α′) and VRv(β
′, β). Definition of i and j

in Subsection 4.1, forces the equality of VRu(α, α′) and VRv(β
′, β). If one is empty, then

the other one must also be empty. Assume that VRu(α, α′) is empty. This means that
there is a vertex t which is directly (not through a cut-diagonal) visible to u within its

10

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

i

q

uv

j′
αβ ′

βj

l′

α′

i′
l

Figure 8: VRu,v(α, β), VRu(α, α′) and VRv(β
′, β) are equal.

t

q

uv

s s′
t′

Figure 9: ss′ and tt′ segments can not differ and must be a single cut-diagonal.

defined vision angle. This vertex is contained inside the region with luj′l′ boundary or
the region with l′j′j boundary. The latter is impossible due to the definition of j which
is the smallest (in polar coordinate around u) visible vertex to u existing after the line l′.
So, the former case must be true.

On the other hand, according to the definition of i, this vertex can not exist inside the
i′uv region. Therefore, it must be contained inside the region with li′vl′ boundary. This
implies that VRv(β

′, β) must also be empty. If VRv(β
′, β) is not empty, then the vertex t

would not be further visible to u directly, but through this cut-diagonal. This contradicts
our assumption. So, either both VRu(α, α′) and VRv(β

′, β) are empty or none of them
are.

Now, assume that both are non-empty and they are not equal. According to the
definition of i and j as discussed above, the endpoints of these cut-diagonals must lie
under the chain jj′vui′i in Figure 8. While these cut-diagonals do not intersect each
other and the uv segment, they must be similar to the segments tt′ and ss′ of Figure 9.
Trivially, ss′, the closer one to vu, is either effective to both u and v or ineffective to both
of them, which means that these cut-diagonals must be unique.

Since, VRu,v(α, β), if it is not empty, must be existed above the line uv, a similar ar-
gument implies equality of VRu,v(α, β) with VRu(α, α′), and VRu,v(α, β) with VRv(β

′, β).
�

If both VRu(α, α′) and VRv(β
′, β) intersect vu, they must intersect each other or at

least one of them has an end point in vuq region. The cut-diagonals can not intersect; so
the latter option must happen. For this case, VRu,v(α, β) is trivially empty. Without loss
of generality, assume that only VRu(α, α′) intersects vu. This implies that VRv(β

′, β) is
empty and thus VRu,v(α, β) is also empty.

Knowing this relation between VRu,v and VRu, we can think of VRu,v as the compo-
sition of VRu and the α′ ranges. These α′ ranges which are computed with respect to v,
are maintained in a data structure called VR′

u,v. Then, for any query point q that sees
within the reflex vertices u and v with visibility ranges of α and β respectively, to find
VRu,v(α, β), we first find α′ from VR′

u,v, associated with the range β. If VRu(α, α′) is
not empty and it does not intersect vu, it will be reported as the value of VRu,v(α, β)
(first q-effective cut-diagonal) and empty is reported otherwise. We can also use VR′

v,u

11

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Cut−Duagonal

Polygon Edge

View Direction

(v3, v5, c2) (v3, v6, c1) (v8, v11, c3) (v9, v10, c5) (v9, v11, c4)L1

u

v1

v2

v3

v4

v5

v6

v8

v9

v11

v7

c2
c1

c3

c4

v12

c5

v10

v2

v3

v4

v5

v6

v7

v8

v9

v12

v1

RDu

v10

v11

(v3, v5, c2) (v3, v6, c1)L2 (v9, v10, c5) (v9, v11, c4) (v8, v11, c3)

V Ru

Figure 10: Building VRu and RDu.

and VRv instead of VR′

u,v and VRu in the same manner.
Therefore, for our purpose, building VRu,v is equivalent to building VRu and VR′

u,v.
We use the original version of our algorithm(before the improvement) to compute

VRu. For a vertex u, V (u) is computed and during this computation, when an effective
cut-diagonal appears in V (u), its VRu is updated accordingly. Moreover, RDu is also
constructed as a byproduct of this process. As shown in Figure 10, RDu entries are main-
tained in a circular sorted list. Entries of VRu which are of the form (α, β, cut-diagonal)
are maintained in two sorted lists L1 and L2. The entries in L1 are sorted in ascending
order of their start ranges (α) and if two entries have equal start ranges, they will be
sorted by their end ranges (β) in ascending order. The entries in list L2 are sorted in
ascending order of their end ranges (β) and if two entries have equal end ranges they will
be sorted by their start ranges (α) in descending order. These lists are shown in Figure 10
for vertex u.

The value of VRu(α, β) is found as follow. The entries (i, j, c) and (i′, j′, c′) of VRu

are found where (i, j, c) is the greatest item in L1 so that range i contains α and (i′, j′, c′)
is the smallest item in L2 so that range j′ contains β. There are four possibilities:

• β lies after the range j and α lies before the range i′. This case happens for VRu(α, β)
in Figure 11. In such cases, the value of VRu(α, β) is empty, which means that there
is no cut-diagonal (effective or ineffective) for such vision ranges.

• β and α lie after the ranges j and i′, respectively. This case happens for VRu(θ, α)
in Figure 11. In such cases, c′ is the value of VRu(α, β).

• β and α lie before the ranges j and i′, respectively. This case happens for VRu(δ, γ)
in Figure 11. In such cases, c is the value of VRu(α, β).

• β lies before the range j and α lies after the range i′. This case happens for VRu(β, γ)
in Figure 11. In such cases, c is equal to c′ and it is the value of VRu(α, β).

Now we describe how to build VR′

u,v for any pair of reflex vertices. Be reminded that

VR′

u,v associates a range α′ of RDu for any range β of RDv. This association must satisfy

12

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

δ

θ

α
β

γ

Figure 11: Computing the values of VRu from L1 and L2.

l

uv

j

k

i

j′

Figure 12: Finding the entries of VR′

u,v.

a constraint: α′ is the smallest range of u whose endpoint lies after the supporting line
of the range β and no vertex exists in the vuj ′ region in which j′ is the intersection of
the supporting lines of the α′ and β ranges. As shown in Figure 12, for range i of v its
associated range of u is j if the region vuj ′ does not contain any vertex. If a vertex like
k exists, the associated range will be l which satisfies the above constraint.

To build VR′

u,v, the entries of RDv are considered according to their counter-clockwise
order starting from the line vu. According to Figure 12, when a range i is considered, the
smallest range j in RDu which contains the vertex i is found. Note that the endpoints of
these ranges can be the same (the vertex i is the same as the vertex j). If the region vuj ′

does not contain any vertex, the range j is associated with the range i and is maintained
in VR′

u,v. Otherwise, assume that k is a vertex in region vuj ′ with the smallest �vuk
angle. In this state, the range l is associated with the range i which satisfies the mentioned
constraint. Notice that the vertex l may be the same as the vertex v in some situations.
Since we are considering the ranges of RDv according to their order, we do not need to
search for the vertex k and we have already considered it before. Therefore, it is enough
to maintain this vertex and update it as we consider the ranges of RDv accordingly.

4.3 Efficiency of the improved algorithm

Cost and benefit of this improvement are as follows:

Lemma 8. Maintaining a data structure of size O(n3) which can be constructed in
O(n3 log n) time makes it possible to skip ineffective cut-diagonals and find the first effec-
tive one in O(log n) time.

13

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

α

q

l

R

u v
H1

H3

u′ v′

l′

H2

L

Figure 13: A hole can produce only two q-effective cut-diagonals.

Proof. The size of VRu for any reflex vertex u is O(n) by the same argument pre-
sented for VRu,v. This structure can pessimistically be constructed by using our visibility
algorithm in time O(n2 log n). Also, RDu, whose size is O(n), can be built as a byproduct
of this process. Computing VR′

u,v for any pair of reflex vertices u and v can be done in
O(n log n) time by a radial sweep on RDv and a binary search on RDu ranges. The size
of VR′

u,v is also O(n). There are O(n2) pairs of reflex vertices. Hence, the total time

and space required to build and maintain VR′

u,v structures are O(n3 log n) and O(n3)
respectively.

To find the first effective cut-diagonal of a query point, VR′

u,v and VRu data structures
are searched each requires O(log n) time. Therefore, the query time of reporting the first
effective cut-diagonal is O(log n). �

Lemma 9. The number of effective cut-diagonals that will be processed by the algorithm
for a query point q is O(|V (q)|). Thus, h′ = O(|V (q)|).

Proof. Any effective cut-diagonal adds at least one edge or vertex to the visibility
polygon of the query point and no one of these changes are repeated twice. Therefore, an
upper bound of the number of these cut-diagonals is the size of the final visibility polygon.
�

Lemma 10. The number of effective cut-diagonals that will be processed by the algorithm
for a query point q is O(h). Thus, h′ = O(h).

Proof. A cut-diagonal can be q-effective from its both ends. If a diagonal like l in
Figure 13, has another q-effective u′v′ portion, there must exist two holes, H1 and H2,
between q and l. Since u′v′ is q-effective, there must be some vertices and edges of P which
are visible from q through u′v′. Hence, at least one of the L or R chains of Figure 13 must
exist. Without loss of generality, assume that L exists. Assume that a middle portion
of another cut-diagonal l′ is also q-effective and it is visible from q through u′v′. Then,
the chain L can not be a part of the outer boundary of P and must be a portion of a
hole like H3. If H3 does not completely contained inside �α then H1 can not further do
its role for another q-effective segment as what it did for u′v′ segment from its right side.
Therefore, each hole can produce at most two such q-effective segments each from one
side. For the case in which H3 lies completely inside �α, the new effective cut-diagonals
of l′ are assigned to H3 instead of H1 and H2.

Thus, an upper bound for the number of the q-effective cut-diagonals which must be
processed for a query point q is O(h). �

So, the efficiency of our algorithm can be rephrased as:

14

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
Theorem 2. A polygon P with a total of n vertices and h holes inside P, can be prepro-
cessed in time O(n3 log n) to build data structures of size O(n3), so that the visibility poly-
gon of an arbitrary query point q within P can be reported in time O((1+h′) log n+|V (q)|)
in which |V (q)| is the size of the output and h′ is an output and preprocessing sensitive
parameter of size at most min(h, |V (q)|).

5 Conclusion

In this paper, we have considered the problem of computing the visibility polygon V (q) of
a point q inside a polygon with holes. This problem has been solved efficiently before, but
in the non-query version. Here, we proposed an efficient algorithm for the query version
of the problem where we preprocess the polygon and build data structures by which the
V (q) of any query point q can be reported rapidly.

We first applied and analyzed the notion of visibility decomposition on this type of
polygons. We then presented an algorithm to report V (q) of any q in time O((1+h′) log n+
|V (q)|) by spending O(n3 log n) time to preprocess the polygon and maintaining a data
structure of size O(n3). The factor h′ is an output and preprocess sensitive parameter of
size at most min(h, |V (q)|).

It is interesting to know if this method can be used to solve other similar problems
such as finding the visibility polygon of a moving point and a line segment, or the visibility
graph of a point set especially in dynamic environments. Another question is whether we
can omit the factor h′ or reduce it to O(log n).

References

[1] T. Asano. Efficient algorithms for finding the visibility polygons for a polygonal region
with holes. In Manuscript. Department of Electrical Engineering and Computer
Science, University of California at Berkeley, 1984.

[2] M. T. B. Aronov, L Guibas and L. Zhang. Visibility queries and maintenance in
simple polygons. Discrete and Computational Geometry, 27(4):461–483, 2002.

[3] J. Bentley and T. Ottmann. Algorithms for reporting and counting geometric inter-
sections. IEEE Transactions on Computers, 28:643–647, 1979.

[4] B. Chazelle and L. Guibas. Visibility and intersection problems in plane geometry.
In Proc. 1th Annu. ACM Sympos. Comput. Geom., pages 135–156, 1985.

[5] H. Gindy and D. Avis. A linear algorithm for computing the visibility polygon from
a point. Journal of Algorithms, 2:186–197, 1981.

[6] P. J. Heffernan and J. S. B. Mitchell. An optimal algorithm for computing visibility
in the plane. SIAM Journal of Computing, 24(1):184–201, 1995.

[7] D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal of Computing,
12(1):28–35, 1983.

[8] D. L. M. S. L. Guibas, J. Hershberger and R. Tarjan. Linear time algorithms for
visibility and shortest path problems inside simple polygons. In Proc. Second Annual
ACM Symp. on Computational Geometry, pages 1–13, 1986.

15

AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT
[9] R. M. L. Guibas and P. Raghavan. The robot localization problem in two dimensions.

SIAM Journal of Computing, 26(4):1120–1138, 1997.

[10] D. Lee. Visibility of a simple polygon. Computer vision, Graphics, and Image Pro-
cessing, 22(1):207–221, 1983.

[11] D. Lee and F. Preparata. Location of a point in a planar subdivision and its appli-
cations. SIAM Journal of Computing, 6(3):594–606, 1977.

[12] M. O. Mark de Berg, Marc van Kreveld and O. Schwarzkopf. Computational Geom-
etry: Algorithms and Applications. Springer, 2000.

[13] A. L. P. Bose and J. I. Munro. Efficient visibility queries in simple polygons. Com-
putational Geometry: Theory and Applications, 23(3):313–335, 2002.

[14] M. Pocchiola and G. Vegter. The visibility complex. Internat. J. Comput. Geom.
Appl., 6(3):279308, 1996.

[15] F. Preparata. A new approach to planar point location. SIAM Journal of Computing,
10(3):473–482, 1981.

[16] N. Sarnak and R. Tarjan. Planar point location using persistent search trees. Com-
munications of the ACM, 29(7):669–679, 1986.

[17] S. Suri and J. O’Rourke. Worst-case optimal algorithms for constructing visibility
polygons with holes. In Proc. of the second annual symposium on Computational
geometry, pages 14–23, 1986.

[18] A. Zarei and M. Ghodsi. Efficient computation of query point visibility in polygons
with holes. In Proc. 21st Annual Symposium on Computational Geometry, pages
314–320. ACM, 2005.

16

