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Abstract

We introduce the concept of 3D-biplanar drawing in
which we partition a graph into two planar induced
subgraphs. Our goal is to find such a partition with
the minimum number of edges between the two par-
titions. We prove that this problem is NP-complete
and present a randomized parameterized algorithm
with O(nk) time, where k is the ratio of the optimal
solution to the min-cut size of the graph.

1 Introduction

Layered graph drawing [1, 14] is a popular paradigm
for drawing graphs which has applications in visual-
ization [15], in DNA mapping, and in VLSI layout [9].
In a layered drawing of a graph, vertices are arranged
in horizontal layers, and edges are routed as polygonal
lines between distinct layers. For acyclic digraphs, it
may be required that edges point downward. Figure 1
shows a sample graph with its 3-Layer drawing.

The quality of layered drawings is assessed in terms
of criteria to be minimized, such as the number of edge
crossings; the number of edges when removed elimi-
nates all crossings; the number of layers; the maxi-
mum span of an edge, i.e., the number of layers it
crosses; the total span of the edges; and the maxi-
mum number of vertices in one layer.

Research on layered graph drawing has been mainly
focused on drawing a graph which admits a 2-layer
drawing with no edge crossings. There are some well
known problems in this area:

Biplanar drawing: Given a bipartite graph G =
(A,B;E), G is said to be biplanar if the vertices can
be drawn on two layers so that none of the edges of
G cross. Eades and Whitesides proved that determin-
ing whether a given G has a biplanar subgraph with
at least K edges is NP-complete. This remains true
when the positions of the vertices on one layer are
specified [5].
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Planarization: 2-Layer Planarization prob-
lem, in which given a graph G (not necessarily bi-
partite), and an integer k called its parameter, the
question is whether G can be made biplanar by delet-
ing at most k edges. If a permutation π of A is given,
this problem is called 1-Layer Planarization.

Crossing Minimization: Instead of deleting
edges, one can seek to minimize the number of cross-
ings in a 2-layer drawing (here the input graph must
be bipartite). The corresponding problems are called
1- and 2-Layer Crossing Minimization.

Unfortunately, the question of whether a graph G
can be drawn in two layers with at most k crossings
(Crossing Minimization), where k is a part of the in-
put, is NP-complete [6], as is the question of whether
r or fewer edges can be removed from G so that the
remaining graph has a crossing-free drawing on two
layers (Planarization) [5]. Both problems remain NP-
complete when the permutation of vertices in one of
the layers is given [5, 6].

Two-layer drawings are of fundamental importance
to Sugiyama approach to multilayer drawing [14].
There are numerous different algorithms for pla-
narization and crossing minimization problems, such
as integer linear programming algorithms [8, 16],
heuristic methods [6, 8, 14], approximation algorithms
[12], and fixed parameter algorithms [3, 2].

We extend biplanar drawing method on 3D space,
and instead of line layers we use the plane layers. Note
that a kind of drawing similar to 3D-biplanar draw-
ing, has been purposed before for clustered graphs [4].
We let vertices be placed in two parallel planes, and
the edges can connect two vertices in the same layer or
in different layers, but in each layer the induced sub-
graph must be planar as illustrated in Figure 2. We
call such drawing 3D-biplanar, and define 3D-biplanar
cut as the number of edges between the two different
layers. Our goal is to find such partition with mini-
mum number of edges between these two partitions.
In other words, we want to find 3D-biplanar cut with
minimum size.

We prove that this problem is NP-complete and
present a randomized parameterized algorithm for it
with O(nk) time, where k is the ratio of the optimal
solution to the min-cut size of graph.

This paper is organized as follows. After proving
the NP-hardness of this problem in Section 2, we
present our randomized parameterized algorithm in
Section 3. In Section 4 we analyze our algorithm. Fi-
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(a) (b)

Figure 1: (a)A sample graph and (b)its 3-Layer draw-
ing

nally, in Section 5 we draw some conclusions.

2 Hardness of 3D-biplanar Drawing

In this section we prove that finding a 3D-biplanar
drawing with minimum 3D-biplanar cut, is NP-
complete as many other layered graph drawing prob-
lems.

To prove that finding a 3D-biplanar drawing with
minimum 3D-biplanar cut is NP-complete, we use
a theorem from Lewis and Yannakakis [10] which is
based on independent work by the two authors that
actually proves a more general result. They use this
result to prove that Maximum Induced Planar Sub-
graph 1 is NP-complete.

Theorem 1 [10] Supposeπ is a graph property satis-
fying the following conditions:

1. There are infinitely many graphs for which π
holds.

2. There are infinitely many graphs for which π does
not hold.

3. If π holds for a graph G and if G′ is an induced
subgraph of G, then π holds for G′. This is called
hereditary property.

Then, the following problem is NP-complete: Given
a graph G = (V, E) and a positive integer k ≤ |V |,
is there a subset V ′ ⊆ V with |V ′| ≥ k such that π
holds for the subgraph of G induced by V ′?

Theorem 2 Given a graph G = (V, E), the problem
of finding a cut C that splits vertex set V into two
subsets V1 and V2 such that each subset being planar
is NP-complete.

Proof. Consider planarity property for a graph G.
Planarity satisfies the following three conditions:

1Given a graph G = (V, E) and a positive integer k ≤ |V |,
is there a subset V ′ ⊆ V with |V ′| ≥ k such that the subgraph
of G induced by V ′ is planar?

Figure 2: A 3D-biplanar drawing

1. It is straightforward that there are infinitely
many planar graphs. For example all trees are
planar.

2. There are infinitely many graphs that has K3,3

or K5 as a subgraph. Each graph that has K3,3

or K5 as a subgraph is not planar.

3. Each induced subgraph G′ of a planar graph G
is planar too.

Hence, planarity property satisfies the three condi-
tions discussed in theorem 1. So, finding a planar in-
duced subgraph with vertex set V ′ such that |V ′| ≥ k
for some k ≤ |V | is NP-complete. We know that
|V1| + |V2| = |V | thus one of |V1| or |V2| is greater
than or equal to |V |/2. If we choose k = |V |/2, we
are done. ¤

We can’t find a 3D-biplanar drawing for all graphs.
So, in the following lemma we will show a necessary
condition for graphs that have a 3D-biplanar drawing.

Lemma 3 If a graph G has a 3D-biplanar drawing,
then G can not contain K9 as a subgraph.

Proof. Suppose graph G contains K9 as a subgraph.
Hence, when we split vertex set V into two subsets
V1 and V2, the induced subgraph with one of vertex
subsets V1 or V2 contains Kr with r ≥ 5 as a subgraph.
We know that planar graphs can not contain K5 as a
subgraph. So graph G can not split into two induced
planar subgraphs. ¤

3 Randomized Parameterized Algorithm

In this section we introduce our main algorithm for
finding a minimum 3D-biplanar cut for a graph G if
it exists. With lemma 3, we can first skip graphs
that doesn’t have necessary condition for 3D-biplanar
drawing.

We repeat the following step: pick an edge uni-
formly at random and merge the two vertices at its
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end-points as illustrated in Figure 3. If as a result
there are several edges between some pairs of (newly
formed) vertices, retain them all. Edges between ver-
tices that are merged are removed, so that there are
never any self-loops. We refer to this process of merg-
ing the two end-points of an edge into a single vertex
as contraction of that edge. With each contraction,
the number of vertices of G decreases by one. The
crucial observation is that an edge contraction does
not reduce the 3D-biplanar cut size of graph G. This
is because every cut in the graph at any intermediate
stage is a cut in the original graph. The algorithm
continues the contraction step until only two vertices
remain. At this point, the set of edges between these
two vertices is a cut in G and is output as a candidate
3D-biplanar cut.

Now, there are two subsets V1 and V2 with a cut-
edge C. Consider two induced subgraphs G1, G2 with
respectively vertex sets V1 and V2. We can easily test
the planarity of these two induced subgraphs by one
of the planarity test algorithms like [7, 11, 13]. These
algorithms take linear time in the worst case.

If G1 or G2 are not planar, we should repeat
this algorithm to find two induced planar subgraphs.
This algorithm does not always find a minimum 3D-
biplanar cut even we find two induced planar sub-
graphs. So, we need to repeat this algorithm to
achieve the minimum 3D-biplanar cut. In the next
section we will compute the number of times needed
to repeat this algorithm until to find a minimum 3D-
biplanar cut, if it exists.

4 Analysis of the Algorithm

Let k denote the minimum biplanar cut size. We fix
our attention to a particular minimum biplanar cut
C with k edges. We will bound from below the prob-
ability that no edge of C is ever contracted during an
execution of the algorithm, so that the edges surviving
till the end are exactly the edges in C.

Suppose the min-cut size in graph G = (V, E) is k′.
So k ≥ k′ and k = hk′ (h is a positive constant factor
that is not dependent on input size, it depends on
only the minimum biplanar cut size and the min-cut
size). Clearly, G has at least k′n/2 edges; otherwise
there would be a vertex of degree less than k′, and its
incident edges would be a min-cut of size less than k′.

Let Ei denote the event of not picking an edge of C
at the ith step, for 1 ≤ i ≤ n−2. The probability that
the edge randomly chosen in the first step is in C is at
most k/(nk′/2) = 2h/n, so that Pr[E1] ≥ 1 − 2h/n.
Assuming that E1 occurs, during the second step there
are at least k′(n − 1)/2 = k(n − 1)/2h edges, so the
probability of picking an edge in C is at most 2h/(n−
1), so that Pr[E2|E1] ≥ 1−2h/(n−1). At the ith step,
the number of remaining vertices is n− i+1. The size
of the min-cut is still at least k′, so the graph has at
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Figure 3: contraction of edge e

least k′(n− i+1)/2 = k(n− i+1)/2h edges remaining
at this step. Thus, Pr[Ei|∩i−1

j=1Ej ] ≥ 1−2h/(n−i+1).
We use the basics to compute probability that no

edges of C is ever picked in the process:

Pr[∩n−2
j=1 Ei] ≥

n−2∏

i=1

(1− 2h

n− i + 1
) ≥ 2

n2h

The probability of discovering a particular 3D-
biplanar drawing (which may in fact be the unique
3D-biplanar drawing in G) is larger than 2/n2h. Thus,
our algorithm may err in declaring the drawing it out-
puts to be a optimum 3D-biplanar drawing. Suppose
we were to repeat the above algorithm n2h/2 times,
where h is the ratio of optimal solution to min-cut size
of graph, making independent random choices each
time. Obviously, the probability that a min-cut is not
found in any of the n2h/2 attempts is at most

(
1− 2

n2h

)n2h

2

≤ 1
e
.

By this process of repetition, we have managed to
reduce the probability of failure from 1 − 2/n2h to
a more respectable 1/e. Further, executions of the
algorithm will make the failure probability arbitrar-
ily small–the only consideration being that repetitions
increase the running time.

5 Conclusion

This paper introduces the concept of 3D-biplanar
drawing in which a graph partitioned into two pla-
nar induced subgraphs. By straightforward reduction
from a more general result, the paper shows that de-
ciding whether a given graph can be cut into two pla-
nar graphs is NP-complete. A randomized algorithm
for finding an optimal cut is given, whose running
time depends on the ratio of the optimal solution and
the min-cut size, as a parameter.

A further step will be to design an efficient algo-
rithm or an approximation algorithm with a good
approximation factor for finding a minimum 3D-
biplanar cut.
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