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Abstract. We consider the problem of walking in an unknown street,
starting from a point s, to reach a target t by a robot which has a
minimal sensing capability. The goal is to decrease the traversed path
as short as possible. The robot cannot infer any geometric properties of
the environment such as coordinates, angles or distances. The robot is
equipped with a sensor that can only detect the discontinuities in the
depth information (gaps) and can locate the target point as soon as it
enters in its visibility region. In addition, a pebble as an identifiable
point is available to the robot to mark some position of the street. We
offer a data structure similar to Gap Navigation Tree to maintain the
essential sensed data to explore the street. We present an online strategy
that guides such a robot to navigate the scene to reach the target, based
only on what is sensed at each point and is saved in the data structure.
Although the robot has a limited capability, we show that the detour
from the shortest path can be restricted such that generated path by our
strategy is at most 11 times as long as the shortest path to target.

1 Introduction

Path planning is one of the basic problems in computational geometry, online
algorithms, and robotics [6, 8, 12]. Specifically, path planning appears in many
applications where the environment is unknown and no geometric map of the
scene is available [3]. In robot path planning, the robot’s sensor is the only
tool to collect information from the scene, and the volume of the information
gathered from the environment depends on the capability of the sensor. A robot
with a simple sensing model has many advantage such as: it is low cost, less
sensitive to failure, robust against sensing uncertainty and noise, and applicable
to many situations [3].

The robot that we use in this research, has a limited ability. It has an abstract
sensor that can only detect the order of discontinuities in the depth information
(or gaps) in its visibility region. Each discontinuity corresponds to a portion of
the environment that is not visible to the robot, (Fig. 1). The robot assigns
to every gap g a label L or R depending on which side of the gap the hidden
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region is. Also, the robot recognizes a target point t when it is in the robot’s
omnidirectional and unbounded field of view. In order to cover the hidden region
behind each gap, the robot moves towards the gap in an arbitrary steps. Note
that the robot cannot measure any angles or distances to the walls of the scene
or infer its position. In addition, we assume that the robot has access to a single
pebble which is a detectable object that can be put anyplace and can be lifted
again.

Throughout this paper, the workspace is assumed to be a restricted simple
polygon called a street. A simple polygon P with two vertices s and t is called
a street if the counter-clockwise polygonal chain Rchain from s to t and the
clockwise chain Lchain from s to t are mutually weakly visible [7]. This means
that each point on the left chain Lchain can see at least one point on the right
chain Rchain and vice versa, (Fig. 1.a). In some literatures, a street is also known
as L-R visible polygon [2]. A point robot that is equipped with the gap sensor
starts navigating this environment from s to reach its target t. The robot has no
geometric map of the scene and only based on the information gathered through
the sensor has to make decisions to achieve the target.

Klein proposed the first competitive online strategy for searching a tar-
get point in a street [7]; called walking in streets. The robot employed in [7] is
equipped with a 360 degree vision system. Also, it can measure each angle or
distance to the walls of the street. As the robot moves, a partial map is con-
structed from what has been seen so far. Klein proved an upper bound of 5.72
for the competitive ratio (the ratio of the length of the traversed path to the
shortest path from s to t) of this problem. Also, it was proved later that there
is no strategy with the competitive ratio less than

√
2 for this problem. A strat-

egy similar to Klein’s with the competitive ratio of π + 1 has been introduced
in [9, 10] which is robust under small navigation errors. Other researchers have
presented several algorithms with the competitive ratios between

√
2 and the

upper bound of 5.72 [8, 10]. Icking et al. presented an optimal strategy with the
competitive ratio of

√
2 [6].

The limited sensing model that we use in this paper was first introduced
by Lavalle et al. [16]. Gap Navigation Tree (GNT) has been proposed to main-
tain and update the gaps seen along the navigating path. This tree is built by
detecting the discontinuities in the depth information and updated by the topo-
logical changes of the information. The topological changes are: appearances,
disappearances, merges, and splits of gaps. Once the GNT is completed, it can
encode the shortest path from its root (start point of the navigation) to any
place in a simply connected environment. It is shown in [15] that, using this
data structure, the globally optimal navigation is impossible in multiply con-
nected environments, but locally optimal exploration can be achieved. Guilamo
et al. [5, 13] presented an online algorithm for the well-known visibility problem
pursuit-evasion in an unknown simply connected environment using GNT. As
mentioned in [15], GNT is well suited for solving other visibility problems. An
optimal search strategy using GNT is presented for a disc robot to find a target
point t, starting from s in a simply connected environment [11].
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Fig. 1. (a) A street in which Lchain is the left chain and Rchain is the right chain.
The colored region is the visibility polygon of the point robot q in the street. (b) The
position of discontinuities in the depth information detected by the sensor.

Another minimal sensing model introduced by Suri and Vicari [14] for a
simple robot. They assume that the robot can only sense the combinatorial (non-
metric) properties of their surroundings. The sensor can detect vertices of the
polygon in its visibility region, and can report if there is a polygon edge between
consecutive vertices. The information maintain in two combinatorial vectors,
called the combinatorial visibility vector (cvv) and the point identification vector
(piv). Despite of minimal capability, they shown the robot can obtain many
geometric reasoning and can accomplish many non-trivial tasks.

In this paper we propose an online search strategy for a point robot equipped
with the gap sensor and the single pebble to reach the target point t in a street
environment, starting from s. The minimal sensing model that we use here is
in contrast with the strong sensing model that Klein used for walking in streets
problem. A data structure that is maintained and updated similar to GNT is
introduced for designing the robot search path. We show that the search path
which is generated by our strategy is at most 11 times as long as the shortest
path. Also, we show that if the robot has access to many pebbles, this ratio
reduces to 9. To our knowledge, this is the first result providing some competitive
ratio for walking in streets with the minimal sensing model.

2 GNT Data Structure and the Sensing Model

2.1 Gap Sensor

Gap sensor is a naive visual sensing model. At any position q of the environment,
a cyclically ordered location of the depth discontinuities in the visibility region
of the point (V (q)) is what the robot’s sensor detects, as shown in Fig. 1. When
the robot reports the discontinuities counterclockwise from a visibility region, it
assigns a left label to a transition from far to near and assigns a right label to a
transition from near to far [15]. The robot can only walk towards the gaps.

GNT data structure has been introduced as a mean to navigate in an un-
known scene for the robot system. Here, we briefly explain the data structure
from [15], and refer to it as Tg. The root of Tg is the robot’s location. Each child
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of the root is a gap g that appears as the robot moves; these gaps are circularly
ordered around the root. Each node, except the root, has a label of L or R. L
means that the part of the scene which is hidden behind the gap is in the left
side of the gap. R means that the part of the scene hidden behind the gap is in
the right side of the gap, (Fig. 2).

As the robot moves, the critical events occur that change the combinatorial
structure of the visibility region of the robot. There are four critical events in
which Tg is updated: the appearance and disappearance events happen when
the robot crosses the inflection rays, the merge and split events occur when the
robot crosses the bitangent complements. In the disappearance event in which a
gap g disappears, the node g will be eliminated from Tg. When a gap appears,
a child is augmented to the root of Tg in a location that the circular ordering
of the gaps is maintained. Each of these added nodes shows a portion of the
environment that was so far visible, and now is invisible. These new nodes are
specified as primitive (others are non-primitive). If a gap g splits into g1 and g2,
then it will be replaced by the new nodes g1 and g2, (Fig. 2). If two gaps g1 and
g2 merge into g , then g1 and g2, the adjacent children of the root, will be the
children of a new node g which is added to the root.

The robot follows the non-primitive gaps until it reaches a point at which
all leaf nodes are primitive. At this point, the robot has observed the entire
environment. This data structure, after completion, can encode the shortest
paths from the start point to any point of the environment.
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Fig. 2. The dark circle denotes the location of the robot. (a) Existing gaps at the
beginning. (b) A split event. (c) A disappearance event. (d) Another split event. (e) A
merge event.



Lecture Notes in Computer Science: Walking in Streets 5

2.2 The Sensor and Motion Primitive

All times, our robot’s sensor reports the gaps, with their labels, in their coun-
terclockwise cyclic order as they appear in its visibility region. The robot carries
a pebble which is a marker device and is distinguishable for it. The robot can
orient its heading with the gaps, and walks towards them in an arbitrary number
of steps, for example: 2 steps towards a gap gx, or 4 steps towards a gap gy. Each
step is a constant distance which is already specified for the robot by its manu-
facturer, for example it may be 1 meter, 2 meters and etcetera. When the robot
moves towards a gap, it comes close to the gap, but the robot cannot report its
distance to gaps and walls, size of gaps, and angles. Whenever a new event in
the sensing of the environment happens, the robot can stop to make a reliable
decision to reach the target. Also, the robot can move towards the pebble and
the target, as soon as they enter in its visibility region, until it touches them.

3 Preliminarily Results

At each point p of the robot’s search path, the gap sensor either sees the target, or
achieves a set of gaps with the label of L or R (l-gap and r-gap for abbreviation).
If the target is seen, the robot moves towards the goal and reaches it. In the other
case in which the robot reports the position of the gaps (nonprimitive gaps), the
robot should move towards the gaps to achieve the target.

Definition 1. In the set of l-gaps, the gap which is in the right side of the
others is called the most advanced left gap and is denoted by gl. Analogously, in
the set of r-gaps, the gap which is in the left side of the others is called the most
advanced right gap and is denoted by gr, (Fig. 3.a).

Each gap is adjacent to a reflex vertex. The corresponding reflex vertices of gl
and gr are denoted by vl and vr, (Fig. 3.a). The two gaps have the following
property.

Lemma 1. On any point of the robot search path, if the target is not visible,
then it is behind one of the most advanced gaps.

Proof. Let the target be behind of another gap, except gl or gr. Without loss of
generality, it is behind an r-gap, so the points that are immediately behind gr
are not visible by any point on the opposite chain, this contradicts the definition
of the street.

Above attribute of the two gaps is similar to the main feature of top most left
packet and top most right pocket in [7].

As the robot moves in the environment, gl and gr may dynamically change.
The critical events in which the structure of the robot’s visibility region changes,
can also change gl and gr. In the next section, we show how the critical events
change the left most advanced gaps such that a sequence of the left most
advanced gaps, [gl1, gl2, ..., glm], appears in the robot’s visibility region, while
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Fig. 3. (a) gr and gl are the most advanced gaps at the start point s. vr and vl are
the corresponding reflex vertices. (b) Sequences of the most advanced gaps may occur,
as the robot moves. The funnel situation which ends as soon as the robot crosses over
the segment d. Dotted chains, starting from s, are the two convex chains of the funnel.
(c) In this case there is only one most advanced gap, at start point s.

exploring the street. Similarly the sequence of the right most advanced gaps,
[gr1, gr2, ..., grn], may occur, (Fig. 3.b).

At each point, if there is exactly one of the two gaps (gr or gl), then the goal
is hidden behind that gap. Thus, there is no ambiguity and the robot moves
towards the gap, (Fig. 3.c). If both of gr and gl exist, then the target is hidden
behind one of these gaps. This case is called a funnel, (Fig. 3.b). As soon as the
robot enters a point in which both of gr and gl exist, a funnel situation starts.
This case continues until one of gr or gl disappears, (Fig. 3.b), or they become
collinear, (point 2 in Fig. 4.a). When the robot enters a point in which there is
a funnel situation, the only non-trivial case in this navigation occurs.

In a funnel situation, previous strategies proposed by Kelin et.al [6–10] were
based on choosing a walking direction within the angle between vr and vl. In
other words, in this case, their robots select a point to move towards which is in
equal distance with vr and vl and repeat this process until the funnel case ends.
But, the robot that we use in this research cannot compute the point between vr
and vl. So, applying their strategy for this robot is impossible. Before describing
our strategy, we state some features of a street and the gaps that are applied in
the algorithm.

When the robot enters in a funnel situation, there are two convex chains in
front of it: the left convex chain that lies on the left chain (Lchain) of the street,
and the right convex chain that lies on the right chain (Rchain) of the street,
(Fig. 3.b). The two chains have the following main property.

Lemma 2. When a funnel situation starts, shortest path from s to t lies com-
pletely on the left convex chain, or on the right convex chain of the funnel.

Proof. Obviously, the point in which the funnel situation starts, belongs to short-
est path from s to t. So, this claim is a straight result of the lemma 1 and the
theorem below.
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Theorem 1. [4] For any vertex vj ∈ Lchain(or, vj ∈ Rchain), shortest path from
s to vj makes a left turn (respectively, a right turn) at every vertex of Lchain

(respectively, Rchain) in the path.

Definition 2. Between the two convex chains, in a funnel situation, the one
which is a part of the shortest path is called exact chain of the funnel.

Lemma 3. Each of the two convex chains, in a funnel situation, contains a
point in which the funnel situation ends or a new funnel situation starts.

Proof. While the robot explores the street in a funnel case, the situation ends
in two conditions: (1) When the robot enters a point in which one of the most
advanced gaps (gl or gr) disappears. The inflection ray of the gap intersects the
two convex chains. The intersection points are the points which are claimed,
(Fig. 3.b). (2) When the robot enters a point in which the two most advanced
gaps are collinear. The bitangent of the corresponding reflex vertices of the
current most advanced gaps intersects the two convex chains. So, the claimed
points exist, (points 2 and 3 in Fig. 4.a).

We refer to the points, which is mentioned in the above lemma as funnel
critical points. Clearly, one of the two points belongs to shortest path from s to
t.

Lemma 4. Assume the robot is walking along one of the convex chain of a
funnel. The exact chain of the funnel can be specified as soon as the robot touches
the critical point that belongs to the chain.

Proof. There are two situations in which the robot touches a critical point: (1)
The robot reaches a point in which one of the most advanced gaps disappears,
obviously the convex chain which contains the existing gap is the exact chain,
(Fig. 3.b). (2) The robot reaches a point in which gl and gr are collinear. If the
point is the corresponding reflex vertex of the gap that the robot was moving
towards, the chain that the robot was walking on it is the exact chain, (point 3
in Fig. 4.a). Otherwise the other chain is the exact chain, (point 2 in Fig. 4.a).

4 Main Strategy

Now, we explain our strategy for the robot to move in the street from s to t
such that the generated path is at most a constant times as long as the shortest
path. In the situation in which only one of the most advanced gaps exists each
reasonable strategy directs the robot towards the gap.

The robot, based on the information gathered through its sensor and the
pebble which it is equipped with, searches the scene. In the funnel situation, we
lead the robot to reach the critical point. Our idea for directing the robot in this
case is inspired by the algorithm for searching a point on a line, called doubling.
In the doubling strategy, the robot moves back and forth on the line, such that
at each stage i, it walks 2i steps in one direction, comes back to the origin, walks
2i+1 steps in the opposite direction until the target is reached.
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Fig. 4. (a)There is a funnel situation at start point s. Points 2 and 3 are the critical
points of the funnel. grs and gls are the most advanced gaps at the start point. gri
and gli are the most advanced gaps at point i, for i = 1, 2, ..., 6. (b) Illustration of
constructing and updating the data structure, as the robot walks along the right convex
chain. Dark circle denote the robot’s location and it is the root of the data structure.
The path leads to Rg is the return path.

Theorem 2. [1] The doubling strategy for searching a point on a line has a
competitive factor of 9, and this is optimal.

If we assume the two convex chains as a line then, by applying the doubling
strategy on this line, we can find the critical point. Therefore, directing the robot
along these two chains avoiding any detour to other places of the environment
is what is important in this exploration.

Lemma 5. The robot traces the left/ right convex chain and detects its critical
point if and only it walks towards the left/ right most advanced gap maintaining
the dynamically changes of the two most advanced gaps.

Proof. When a funnel situation starts, the first vertex of the left/ right convex
chain coincides with the corresponding reflex vertex of the currently left/ right
most advanced gap. This most advanced gap doesn’t change until the robot
touches the reflex vertex. Then the first segment of the convex chain and robot’s
path are the same. Other segments are similarly coincident. As soon as the robot
reaches a point in which one of the most advanced gaps disappears, or they are
collinear, the critical point is achieved.

In the following subsection, we describe the process of constructing and updating
the required data structure for leading the robot along the two convex chains
and coming back to the origin (the point in which funnel case starts).
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4.1 Data Structure

In the funnel situation, the robot puts a pebble on the point to mark this point
as origin. In order to follow each of the two convex chains to reach the critical
point, it must dynamically maintain the changes of gr and gl. Furthermore, the
required information to come back to the origin must be preserved. This data is
saved in a tree which we called S-GNT (street GNT).

The root of this tree is the start point of the funnel (current location of the
robot). gr and gl are the only leaf of the tree, at the point. As the robot moves,
the critical events, appearance, disappearance, merge and split, may dynamically
change gr and gl. Moreover, these critical events generate the comeback path to
origin as follows: (Assume the robot follows the right convex chain, in other words
it moves towards gr. The situation in which it moves towards gl is symmetric
and the S-GNT is constructed analogously.)

– When the robot crosses a bitangent complement of gl and another l-gap,
then gl splits and will be replaced by the l-gap, (point 1 in Fig. 4.a).

– When the robot crosses a bitangent complement of gl and an r-gap, then gl
splits into two gaps. gr will be replaced by the r-gap. At this point gl and
gr are collinear and the funnel situation ends, (point 2 in Fig. 4.a).

– When the robot crosses a bitangent of gr and another r-gap, at the point
in which gr disappears, gr will be replaced by the r-gap, in the tree. (dis-
appearance and split events occur simultaneously.) In this situation, if there
are more than one gap similar to the r-gap, gr will be replaced by the one
which is in the left side of the others, (point vr1 in Fig. 3.b).

– When the robot crosses a bitangent of gr and another l-gap, at the point
in which gr disappears, gl will be replaced by the l-gap, in the tree. (disap-
pearance and split events occur simultaneously.) In this situation, if there
are more than one gap similar to the l-gap, gl will be replaced by the one
which is in the right side of the others, (point 5 in Fig. 4.a).

– When the robot crosses over an inflection ray, each of gl or gr which is
adjacent to the ray, disappears and is eliminated from the data structure.
each of the critical point of the funnel in Fig. 3.b is an example for this
event.

– When the robot crosses over an inflection ray, a gap may appear. If this gap
hides the pebble that was so far visible, a child is augmented to the root of
S-GNT in a location that the circular ordering of the gap and gr and gl is
maintained. We refer to this gap as comeback gap. This gap is maintained
in the tree for generating the comeback path to the origin, (point vr1 in
Fig. 3.b). Other appearance events don’t change the data structure.

– When the robot crosses a bitangent of reflex vertex of gr and reflex vertex
of the comeback gap, these two gaps merge. So, the comeback gap will be a
child of a new node which is added to the root, (point vr2 in Fig. 3.b).

Note, the last two events update the data structure such that the return
path to the origin is generated. In Fig. 4.b, the process of constructing the data
structure, as the robot traces the right convex chain in the funnel situation in
Fig. 3.b, is illustrated.
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4.2 Algorithm

The robot starts navigating the environment based on the information gathered
about the most advanced gaps until reaches a point in which the target is visible.

At each point, if there is exactly one of the two gaps (gr or gl), then the goal
is hidden behind that gap. Thus, there is no ambiguity and the robot moves
towards the gap.

In the funnel case in which both of gr and gl exist, the robot is not sure that
the target is hidden behind which of these gaps. The robot put a pebble at this
point, and saves the location of the two most advanced gaps at this point as grf
and glf . At each stage i, the robot while constructing S-GNT, walks 2i steps
along the right convex chain, and returns to origin by following the return path,
then walks 2i+1 steps along the opposite convex chain until a critical point of
the funnel is achieved. As soon as the robot touches a critical point of current
funnel, from lemma 4, the exact chain of the funnel is determined. So, at the
critical point, the robot returns to the origin to pick up the pebble and walks
along the exact chain to reach the target while constructing the S-GNT. The
robot continues walking along the convex chain until the target is achieved or a
new funnel case starts again. In the later case, the procedure for a funnel case
(the doubling procedure) is repeated.

Note that at each stage i in a funnel case that the robot start going forth
along one of the two convex chains, gr and gl in S-GNT are set to grf and glf ,
and as the robot moves S-GNT dynamically is constructed again, as explained
in the previous section. Also, When no pebble is put on the environment, no
return path generates in the S-GNT.

5 Correctness and Analysis

In this section, we show that the robot by following the path generated with
our strategy achieves the target t starting from s. Also, we compare the length
of the generated path with the shortest path and prove a constant competitive
ratio for our strategy.

Theorem 3. By executing our strategy, the robot rightly reaches target t, start-
ing from start point s.

Proof. In the walking in streets problem, the target constantly lies behind gl
or gr. Thus, the events in which gr and gl are updated must be considered as
critical events in the problem. Now, we show that these critical events are only
the two types of the critical events: Split and disappearance. Each appearance
event creates a primitive gap which was once visible by the robot. Obviously,
the target is not behind this gap. A critical event which merges gr and gl occurs
when the robot crosses the bitangent complement of the corresponding reflex
vertices of the two gaps. As shown in Fig. 4.a, the bitangent complement either
is in the left side of the line which connects the current position of the robot
to gl or is in the right side of the line which connects the current position of
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the robot to gr. According to the algorithm, the robot cannot cross over the
bitangent complement. Also, a most advanced gap merges with another gap at
the point in which the most advanced gap will disappear. Hence, just the split
and the disappearance are the critical events which change gr and gl. The merge
and appearance are handled for constructing the return path to origin in data
structure S-GNT.

We now compare the length of the path constructed by our online search
strategy, and the length of shortest path. Each online walking strategy for a
robot with the minimal sensing capability (the gap sensor) can significantly
detour from the shortest path. Here, we prove a competitive ratio for the length
of the generated search path by the algorithm.

Lemma 6. In each funnel case, if we eliminate the robot movement to reach
the critical point of the funnel, and comeback path to the origin of the funnel
from the generated path by our strategy, the remained path and shortest path are
coincide.

Proof. When a funnel situation stars, the robot isn’t sure which chain is the exact
convex chain. From lemma 4, if the robot achieves the critical point, the exact
chain is specified. So, the only detour from the shortest path is the movement
to reach the critical point and comeback path to origin, in each funnel case.

Theorem 4. By executing our strategy the robot can search a goal in an un-
known street with a competitive ratio of at most 11. If the robot was allowed
carrying many pebbles, it can search a goal with a competitive ratio of at most
9.

Proof. By lemma 6, if an algorithm achieves a competitive factor in each funnel
case, then it achieves the same ratio in every streets. So, we compare these two
paths in one funnel in order to find the detour from the shortest path. The robot,
using the information gather through its sensor about the most advanced gaps,
searches the convex chains of the funnel, by executing the doubling strategy,
until it reaches the critical point of the funnel. The robot traverses at most 9
times as long as the shortest path to reach the critical point. At this point, the
robot comes back to the origin to pick up the pebble then walks along the exact
chain. So, in each funnel situation the robot traverses at most 11 times as long
as the length of shortest path to reach the critical point of the funnel which is
on the shortest path.

6 Conclusions

In this study, we proposed an online strategy for the walking in streets problem
for a point robot that has a minimal sensing capability. The robot can only detect
the gaps and the target in the street. Also, it carry a pebble to mark some
locations of the environment. Our strategy generates a path with a bounded
detour from the shortest. We proved that our strategy has a competitive ratio of
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11. Improving this upper bound can be considered as an opportunity for future
research. Introducing more general classes of polygons which admit competitive
searching with minimal sensing is an interesting open problem.
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