
A Coarse Grained Solution to Parallel Terrain Simpli�cation

�

M. Ghodsi J-R. Sack

Computer Engineering Department School of Computer Science

Sharif University of Technology Carleton University

Tehran, Iran Ottawa, ONT, K1S 5B6

ghodsi@ce.sharif.ac.ir sack@scs.carleton.ca

Abstract

In this paper, we propose a coarse grained parallel

solution for approximate simpli�cation of a terrain

given in Regular Square Grid (RSG) model. The

simpli�ed surface will be represented as a Triangu-

lated Irregular Network (TIN). The algorithm parti-

tions the input data into a constant, relatively small,

number of pieces each of which is assigned to one pro-

cessor. Processors Delaunay-triangulate their initial

partitions separately and simplify them in parallel up

to a given approximate error. Processors then follow

a protocol to combine their results in this step and

iterate until no more points can be removed.

1 Introduction

Simpli�cation of graphic objects is a fundamental

problem which is used by many applications in di�er-

ent �elds such as GIS, computer graphics, and com-

puter vision. This operation is to considerably reduce

the amount of data needed to represent the object so

that the approximated image preserves the object's

shape and features up to a certain tolerance error

with the goal that the required processing can be per-

formed e�ciently.

In this paper, we are interested in simpli�cation

of a natural terrain that is generally viewed as a

2

1

2

-dimensional surface. Mathematically, this is ex-

pressed as a function z = f(x; y) where z is the eleva-

tion of the surface at a point (x; y) of the Euclidean

�

This research was supported by ...

plane. In practice, this function is represented dis-

cretely based on the set of elevations of the points

sampled by satellites.

Two main digital terrain models are Regular

Square Grid (RSG), and the Triangulated Irregular

Network (TIN). The RSG exhibits a highly regular

topology and is easily constructed from the data ob-

tained by satellites. It is also directly embeddable

in parallel computers with �xed regular topologies.

TIN, on the other hand, exhibits an irregular topol-

ogy and is a better model for representation of large

natural terrains that are usually very irregular. Al-

though TIN is very suitable for representation of sim-

pli�ed terrains, it requires complex techniques for

parallel implementation and processing.

In this paper, we propose a parallel algorithm that

receives a terrain as input given in RSG model and

constructs the simpli�ed TIN representation that ap-

proximates the original terrain to a given tolerance

error.

Puppo et al. [7] proposed a �ne grained parallel al-

gorithm to convert a RSG data into an approximate

TIN. The algorithm is a parallel implementation of

the early sequential greedy insertion technique pro-

posed by Fowler and Little[2]. An initial approxima-

tion of the terrain with small number of points is con-

structed as a TIN. New points are added iteratively

and triangulated is updated, until the error is below

the threshold. In the parallel implementation there

is one process for each triangle in the current trian-

gulation, and one process for each point not yet in-

serted. Iteratively and in parallel, each triangle �nds

a point with the maximum error that lies inside it as

a candidate for insertion. In a complex process with

1



(a) (b)

Figure 1: (a) Initial triangulation of the terrain, (b) �nal simpli�ed TIN.

many message passings, all candidates are inserted

into the TIN in parallel and new processes are cre-

ated dynamically for new triangles. The algorithm

was implemented on a CM-2 with 16K processors.

Although good speedup has been reported but Gar-

land and Heckbert has shown that parallel candidate

insertion produces poorer result than the sequential

greedy insertion algorithm [3]. The algorithm is also

not suitable for implementation on a system with few

processors.

Our algorithm is coarse grained and is imple-

mentable even on a network of workstations with high

speed connection network which can be readily acces-

sible.

2 Overall Algorithm

The input terrain is given as N � N points in RSG

format. Input data is partitioned into a constant

number of pieces (P ) and each piece is assigned to

one process. The number of partitions are usually

the same as the number of processors and this is as-

sumed to be the case in the rest of this paper.

Each process triangulates its initial data and sets

up a data structure for the resulting TIN so that dif-

ferent operations are performed e�ciently and the

TIN remains Delaunay triangulated. Each process

also keeps track of the points on the border of its TIN

and those that are shared by other processes. These

processes are called TIN-processes and are numbered

from 1 to P . There is one more process, numbered

zero and called coordinator that makes global deci-

sion based on information it receives from the TIN-

processes and sends coordinating messages to them.

There are three main steps in our algorithm that

are repeated by all TIN-processors until a �nal level

of overall simpli�cation is reached. These steps are

called: 1) Simpli�cation, 2) Shrink, and 3) Expand.

Simpli�cation step is performed by all processes

on their TINs in parallel. A breadth-�rst variation

of Lee's drop algorithm[5] is used to remove some

points based on a given error. This step is repeated

until no more point can be dropped. Clearly, sim-

pli�cation cannot be performed on the border points

that are shared by other processes, because the TIN-

2



process does not have information on some of the

points in the star-shaped polygon surrounding the

border point considered for removal. That is why no

points on the shared border is dropped.

Shrink and Expand steps are designed so that re-

moval of the points on shared border is possible. In

Shrink step, a TIN cuts one or more layers of its tri-

angles on its border to an speci�ed neighboring TIN

and sends this information to the relevant receiving

process. This step is involved and will be explained

later.

Expand step is performed by a process that re-

ceives shrink information from a neighboring process.

Upon receipt of this information, the process patches

the points and triangles to its TIN, and updates its

data structures that is needed for next simpli�cation

step in which points on the old border can now be

dropped.

Figure 1(a) shows the input terrain partitioned in

nine pieces and triangulated by nine processes. Fig-

ure 1(b) shows the �nal simpli�ed TIN.

3 Data Structures Used

In our implementation, we have used data structures

provided by LEDA [6]. delaunay_triang is the main

class used for storing the TINs. Our algorithm needs

several operations on TINs that are e�ciently pro-

vided by this class. These operations are: insertion

and deletion of points, point location, adjacent edges

for each node, adjacent faces for each node, etc.

Each process keeps a priority queue Q for the

points in its TIN except those that are on the shared

border. There are points on the border of the initial

un-partitioned TIN that are not shared by any other

TINs. These points are included inQ. The priority of

a point p in Q, which is called �tness(p) is de�ned as

jz

p

� z

0

p

j where z

p

it the elevation of p given as input

and z

0

p

is the interpolated elevation of p assuming that

it has been removed from the TIN. z

0

p

is computed as

follows: A delaunay triangulation of the star-shaped

polygon R surrounding p which includes points that

are connected directly to p, is constructed. z

0

x

is then

interpolated from the elevation of the vertices of the

triangle into which p lies.

To facilitate updates in Q, a pointer is also set from

each point in the TIN to its corresponding node in

Q.

A circular link list is constructed for the points on

the border of the TIN. The nodes on this list are

ordered clockwise. For each node in this list, the pro-

cess numbers that share this node is also saved. This

structure facilitates identi�cation of external edges

that are parts of the delaunay triangulation of the

given points, but are not included in the triangula-

tion of the complete un-partitioned TIN. This list

also facilitates cutting and patching of border points

that is performed in Shrink and Expand steps.

4 Simpli�cation

The following algorithm is performed by all TIN-

processes in parallel for simpli�cation of their TINs:

1. Repeat until there is no more point to remove

(a) Find, mis-lip, a maximal independent set

of least important points in the TIN:

i. Repeat until Q is empty or the mini-

mum priority of Q is less than error

A. Remove the node u with the min-

imum priority from Q and append

it to mis-lip.

B. Remove all neighbors of u in the

TIN from Q, if they exist.

(b) For each node v in mis_lip do,

i. Construct the star-shaped polygon R

consisting of all neighbors of v,

ii. Delete v and its attached edges from

TIN,

iii. Delaunay triangulate R,

iv. For each node w in R, if v is not on

shared border, �nd its new �tness value

and update w in Q.

Each TIN-process sends a message to the coordi-

nator at the end of the simpli�cation step. The mes-

sage includes the number of points removed, number

of points left, and number of points shared by neigh-

boring processes.

3



(a) (b)

Figure 2: (a) TINs after �rst simpli�cation, and (b) after �rst Shrink/Expand.

5 Shrinking and Expansion

Based on information that the coordinator receives

from the simpli�cation reports, it decides the order

of Shrink/Expand steps that need to be performed

by each TIN. This decision is made with three goals

in mind: (1) all points on the current shared border

should be transferred to one of the involved TINs so

that they can be considered for removal in the next

simpli�cation phase, (2) the order of Shrink/Expand

steps performed by the TINs should satisfy the serial

constraints that exists between some of these opera-

tions, but it should allow parallel executions of these

steps as much as possible, and (3) the load among

processes after Shrink/Expand steps is balanced as

much as possible. The latter is needed because the

number dropped points usually di�ers largely from

one TIN to another. Coordinator can dictate the

Shrink/Expand steps in a way that the number of re-

maining points in the TINs in the next step is almost

balanced.

Coordinator takes these issues into consideration

and computes an ordered list of Shrink/Expand com-

mands for each TIN and sends it to the relevant TIN

process. Each TIN-process follows the commands it

receives at and performs the Shrink and Expand op-

erations that is asked to do.

A Shrink messages to process i tells i to shrink k

layers for a neighboring process j. An Expand mes-

sage is also sent to process j to expect shrink mes-

sages from process i and to expand towards i after

receiving shrink information.

A process i that is to shrink k layers for a neigh-

boring process j calculates three sets of points: S

1

containing the points that are currently shared by i

and j, S

2

containing points to become the new border

between i and j, and the third, possibly empty, set S

3

that includes other points that are transferred from

i to j. Process i sends these sets to j in three mes-

sages, removes the points in S

1

and S

3

from its TIN,

and updates its border information and its priority

queue.

The points and triangles that process i removes

from its TIN, may a�ect the border information of

its other neighboring processes. Process i may not

remain neighbor to process l 6= j and l may become

4



new neighbor of j. It is important that the border in-

formation are consistent in all TINs. Therefore, the

shrinking process i sends special messages to those

neighbors that need to update their border informa-

tion.

Process j will be in Expand state waiting for mes-

sages from i. This is guaranteed by the algorithm

used by coordinator. After receiving three messages

from i, j inserts the points in S

2

and S

3

and patches

the triangles to its TIN and updates its border infor-

mation accordingly. It can be shown that j triangu-

lates these new points in exactly the same way that

they were triangulated in i.

A process goes into a series of Shrink and Expand

states dictated by the coordinator. Due to the serial

nature of a Shrink and its relevant Expand, there are

blocking periods for a process waiting to expand, but

it s claimed that these steps are parallelized as much

as possible in practice.

Figure 2(a) shows the TINs after the �rst simpli-

�cation step, and �gure 2(b) shows the TINs after

processes are done with their Shrink/Expand steps

and can start the next simpli�cation step.

6 Implementation

The parallel algorithm is being implemented on a 16-

node Pentium-based network of workstations. LEDA

is used to provide di�erent data structures and Mes-

sage Passing Interface (MPI) [4] library is used to

provide message passing primitives.

Early experimentation shows that the simpli�ca-

tion steps are the most costly phase of the algorithm

which is performed in parallel by all TIN-processes.

It has also been observed that most of the points are

removed in the �rst simpli�cation step and the num-

ber of removed points drastically reduced in the next

steps. The algorithm usually ends after three or four

simpli�cations steps and the resulting simpli�ed TIN

is very \similar" the one resulting from the simpli�-

cation algorithm performed on the overall TIN.

We have also observed that the amount of informa-

tion sent by di�erent messages is reasonably small, so

we do not expect much overhead on the performance

due to these messages. Therefore, we expect that our

algorithm provides a good speed up in practice.

7 Conclusions

In this paper, we presented the overall view of a

coarse grained parallel algorithm for simpli�cation

of a large terrain given in RSG model. The result-

ing terrain is represented in TIN. The initial data

is partitioned among a small number of processes.

Processes triangulate their data and perform a serial

simpli�cation based on Lee's drop method in paral-

lel to simplify their TINs. Based on a cut-and-patch

strategy, the border points and their adjacent trian-

gles are transferred among TINs so that they can be

chosen for removal in the next simpli�cation step.

These steps are repeated until no more point can be

removed.

Our experience with a simulation of this algorithm

shows a good performance with reasonable message

passing overhead. We believe that our parallel imple-

mentation will provide a good speedup.

Our algorithm can be a good basis for hierarchical

multi-resolution representation of terrains[1]. It is

also possible to modify this algorithm to compute

approximate data-dependent TINs[8].

References

[1] L. De Floriani and E. Puppo. A hierarchi-

cal triangle-based model for terrain description.

LNCS, (639):236{251, 1992.

[2] R.J. Fowler and J.J. Little. Automatic extrac-

tion of irregular network digital terrain models.

Computer Graphics, 13(3):199{207, 1979.

[3] M. Garland and P. S. Heckbert. Fast polygonal

approximation of terrains and height �elds. Re-

port CMU-CS-95-181, Carnegie Mellon Univer-

sity, 1995.

[4] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:

Portable Parallel Programming with the Message-

Passing Interface. MIT Press, 1994.

5



[5] J. Lee. A drop heuristic conversion method for

extracting irregular network for digital elevation

models. In GIS/LIS'89 Proc., pages 30{39, 1989.

[6] K. Mehlhorn and S. N�aher. Leda, a platform for

combinatorial and geometric computing. Com-

munications of the ACM, 38(1):96{102, 1995.

[7] E. Puppo, L. Davis, D. De Menthon, and Y. A.

Teng. Parallel terrain triangulation. Int. J.

Geographical Information Systems, 8(2):105{128,

1994.

[8] S. Rippa. Adaptive approximation by piecewise

linear polynomials on triangulations of subsets of

scattered data. SIAM Journal on Scienti�c and

Statistic Computing, 13(1):1123{1141, 1992.

6


