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Abstract

The visibility graph is a fundamental geometric structure which is useful in many applica-
tions, including illumination and rendering, motion planning, pattern recognition, and sensor
networks. While the concept of visibility graph is widely studied for 2D scenes, there is not
any acceptable equivalence of visibility graph for 3D space.

In this paper we explain some reason for this absence. Then we try to find a new way
to define geometric structure in 3D space. Following our new way, we easily define a new
structure called 3D visibility graph which we believe is the natural way to extend visibility
graph in 3D scenes. We show how to compute it in an acceptable time.
keywords: computational geometry, visibility graph, 3D visibility.

1 Introduction

Problems involving the visibility of objects
have arisen in several areas of computer science,
for examples, graphics, VLSI layout, motion
planning, and computational geometry. Fre-
quently the underlying structure of the visi-
bilities is critical and a graph can be created
that condenses this structure information into
a more usable form.

The visibility graph is a fundamental ge-
ometric structure useful in many applications,
including illumination and rendering, motion
planning, pattern recognition, and sensor net-
works.

Consider the path planning problem in a
2D polygonal scene. The visibility graph is de-
fined as follows: The nodes are the vertices of
the scene, and an arc joins two vertices A and B
if they are mutually visible, i.e. if the segment

[AB] intersects no obstacle. It is possible to go
in straight line from A to B only if B is visible
from A. The start and goal points are added to
the set of initial vertices, and so are the corre-
sponding arcs (see Figure 1). Only arcs which
are tangent to a pair of polygons are necessary.

It can be easily shown that the shortest
path between the start point and the goal goes
through arcs of the visibility graph. The rest of
the method is thus a classical graph problem.

This method can be extended to non-
polygonal scenes by considering bitangents and
portions of curved objects. In the latter case we
will have a tangent visibility graph (TVG). The
set of vertices in this graph is O, the convex
objects of the scene. Furthermore any common
tangent of two objects O1, O2 ∈ O whose end-
points can see each other correspond to an edge
{O1, O2} of the TVG. Both visibility graph of
polygonal scene and tangent visibility graph
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of smooth object can be computed in optimal
O(k + n log n) time. Here n in the number of
polygons or objects and k is the size of visibility
graph.

In this paper we review the main concepts
of visibility graph in section 2.1. In section
2.2 we outline the most famous algorithms for
building visibility graph and in section 2.3 we
enumerate some of its application in computa-
tional geometry. In section 3 we specify some
of the reasons that lead to complexities of visi-
bility relations in 3D. In section 4 we introduce
a new structure called 3D visibility graph that
plays the role of visibility graph in 3D scenes.
In section 4.5 we give an algorithm for build-
ing 3D visibility graph that runs in O(n3 log n)
time.

2 Preliminaries

In this section we review the visibility graph an
its construction algorithms and applications.

2.1 Visibility Graph

The concept of a visibility graph is widely stud-
ied in computational geometry.

Consider a collection O of pairwise disjoint
objects in the plane. We are interested in
problems in which these objects arise as obsta-
cles, either in connection with visibility prob-
lems where they can block the view from an-
other geometric object, or in motion planning,
where these objects may prevent a moving ob-
ject from moving along a straight line path.
The visibility graph is a central object in the
context of these problems. For polygonal ob-
stacles the vertices of these polygons are the
nodes of the visibility graph, and two nodes are
connected by an arc if the corresponding ver-
tices can see each other. Lee described the first
non-trivial algorithm for computing the visibil-
ity graph of a polygonal scene with a total of
n vertices in O(n2 log n) time [2]. Ghosh and
Mount presented an optimal O(k + n log n) al-
gorithm, where k is the number of arcs of the
visibility graph [13].

In the case of smooth convex objects, the
visibility graph is referred as tangent visibility
graph (TVG). The set of vertices of this graph

is O. Furthermore any common tangent of two
objects O1, O2 ∈ O whose endpoints can see
each other correspond to an edge {O1, O2} of
the TVG. (Note that there are at most 4 edges
between two vertices.)

2.2 Construction Algorithms

In this section we review some algorithms de-
veloped for computing the visibility graph of a
2D scene.

D.T. Lee in his 1978 Ph.D. dissertation [11]
wrote about the first nontrivial solution to the
visibility problem running in O(n2 log n) time.
In the mid-to-late 1980s a series of O(n2) pa-
pers appeared. In 1985, E. Welzl described a
technique based on an arrangement of the dual
of the vertices followed by a topological sort to
order the vertex pairs in O(n2) time [12]. This
technique is used in other computational ge-
ometry problems as well. Welzl’s technique re-
quires O(n2) working space. It works for a set
of line segments and can be adapted for sets
of polygons. Edelsbrunner and Guibas later
improved the working storage of the topologi-
cal sweep to O(n) [14]. About the same time,
Asano, et al. [15] offered two other versions
with arrangements also requiring O(n2) space:
the first via triangulation and the second via
scan-lines and segment splitting. These tech-
niques construct the polar order one vertex at a
time as opposed to Welzl’s technique that pro-
duces a good permutation (not strictly sorted,
but good enough) among all vertex pairs at
once. Asanos technique can also handle dy-
namic updates in O(n) time. In 1988, a paper
by Overmars and Welzl describes yet another
O(n2) technique that does not need to calculate
the dual arrangement and uses only O(n) work-
ing space. The paper also describes a second
algorithm running in O(|e| log n) time and O(n)
space, where |e| is the number of edges in the
visibility graph. It is efficient for sparse graphs,
i.e. when |e| = O(n). Of course, all of the
O(n2) algorithms are optimal when the graph
is dense, in other words when |e| = O(n2).

Towards the end of the appearance of the
O(n2) papers, two output-sensitive approaches
became known [13, 16]. Ghosh and Mount
show a planar-scan technique using triangula-
tion and funnel splits to achieve O(|e|+n log n)
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Figure 1: Path planning using the visibility graph.

time bounds [13]. The other work by Kapoor
and Maheshwari essentially achieve the same
time bounds using corridors which are based
on a triangulation dual. With both of these,
the time is basically bounded by the number of
edges in the visibility graph, but it can be domi-
nated by the time it takes to triangulate (which
optimally is O(n log n) for a polygon with sim-
ple polygonal holes). Thus, both of these ap-
proaches are optimal for graphs with density as
low as |e| = O(n log n) but no lower.

Here we represent three different algorithms
for computing the visibility graph of a scene
consist of n polygons. First we describe naive
(i.e. trivial) approach which runs in O(n3)
time. After that, Lees algorithm is described
which runs in O(n2 log n) time, followed by
Overmars and Welzl’s method (being one of the
more elegant O(n2) algorithms).

2.2.1 Naive Algorithm

A simple solution to the problem would be
to just look at every edge to see if it
blocks/interferes with a given pair of vertices.
If none interfere, then the two vertices are visi-
ble to each other (otherwise not). Of course, to
produce the entire visibility graph, the proce-
dure loops through every pair of vertices. The
time analysis is simple also: there are

(
n
2

)
pairs

of vertices which is O(n2) and there are O(n)
edges (one for every vertex) so this means the
total time is O(n3). As for storage, the al-
gorithm requires O(n) working space (at least
to store the input), and if the visibility graph
is stored - not just reported - then it requires
O(|e|) memory.

2.2.2 Lee’s Algorithm

The algorithm attributed to D. T. Lee repre-
sents the first nontrivial solution running in
O(n2 log n) time [11]. The basic idea is simple:
for each vertex, sort the other points in angu-
lar order around it, then visit each one keeping
track of the order of intersected edges made by
the scan-line. If the visited point is associated
with the first edge in this ordered list, then it
can be reported. Otherwise, it must be ob-
scured by some other edge appearing before it
(with respect to the center) and so would not
be reported. Of course, the edge list must han-
dle inserts and deletes in O(log n) time which
means using optimal sorting (of which many
are available).

Figure 2 shows the intuitive idea. The edge-
list here would be {5, 2, 1, 4, 3} - the order of in-
tersecting edges from the center along the scan-
line. Of course, in reality, the scan-line only
stops at vertices (not in the middle of edges).

What happens at each vertex visit depends
on the polygonal edges associated with that
vertex. There may be two inserts, two deletes,
or an insert and a delete. Figure 3 shows these
situations with vertices marked a, b, and c with
edges marked 1-10. Collinear points are han-
dled as follows: if several points lie along the
same scan-line, the order is determined by the
distance from the center. In figure 3, vertex a
would be visited, followed by vertex b, followed
by vertex c. Before a is visited, the edge-list
would be {5, 9, 10, 3, 6, 2}. When a is handled,
both its edges are deleted, so the edge-list after-
wards would be {5, 3, 6, 2}. When b is handled,
both its edges are inserted, so the edge-list be-
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Figure 2: Example of Lee Scan with Edge-List.
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Figure 3: Basic Cases in the Lee Scan.

comes {5, 3, 8, 7, 6, 2}. When c is handled, one
edge is deleted and the other is inserted. The
edge-list at the end would be {5, 3, 8, 7, 6, 1}.

Time analysis: there are (n − 1) vertices
to be visited for each of n2 centers. At
each of the (n − 1), it takes O(log n) for
the search/insert/delete, thus making the time
for one scan (n − 1)O(log n) = O(n log n).
The time for all n scans would then be
nO(n log n) = O(n2 log n).

Space analysis: in the worst case, there
may be O(n) edges in the edge-list at any one
given time, but no more. The angularly sorted
list also requires O(n) storage during one scan,
but can be freed after the particular center has
completed. Of course, in order to store the vis-
ibility graph, it takes O(|e|) space.

2.2.3 Overmars and Welzl’s Algorithm

Welzl originally published a paper[12] describ-
ing a technique based on a topological sort of
the dual arrangement of segments in a plane.
Because it effectively sorts all

(
n
2

)
pairs of ver-

tices, it runs in O(n2) time (as opposed to
Lees O(n2 log n) algorithm which scans one ver-
tex at a time with a sort of all other points
at each step). The space required is O(n2).
This was later improved by Edelsbrunner and

Guibas to O(n) space [14]. Asano, et al. [15]
has one version of this based on triangulation
and set-union and another based on scan-lines
and splitting. The Overmars and Welzl paper
[17] represents a practical version without us-
ing dualization[1]. Instead, it is based on the
concept of rotation trees.

The idea is simple: for each vertex, a scan-
line is kept which runs from - π/2 to π/2 hop-
ping from vertex to vertex in its path. Dur-
ing the main loop, it appears that all of the
scan-lines are proceeding simultaneously. In
fact, there are exact rules about determining
the next vertex to process, and some vertices
may finish their scan before others.

To understand the rules about finding the
next vertex, the rotation tree must be under-
stood. A rotation tree is a rooted planar tree
where each vertex is a node and points to its
parent. There are two special nodes: +∞ and
−∞, where −∞ is infinitely below and just to
the right of all regular points, and inf is in-
finitely above and just to the right of all reg-
ular points. Initially, all vertices point to −∞
as their parent and −∞ points to +∞. Also
stored is the rightmost child (if a node is a par-
ent), and its right and left siblings (if they ex-
ist). The ordering of children is by slope: the
one with the smallest slope is the leftmost.



The loop that examines all pairs simply
takes the rightmost leftmost leaf as the next
segment to process and then reattaches it to the
tree (while maintaining the property of being
a rotation tree). It can reattach to the left of
its parent or to the tangent of the chain above
it. When a vertex attaches to +∞, it is fin-
ished. The loop continues when all points have
attached to +∞.

2.3 Applications of the Visibility
Graph

The visibility graph problem itself has long
been studied and has been applied to a vari-
ety of areas. A common use for it has been
for finding the shortest path1. Exploiting the
fact that the shortest path consists of arcs of
the visibility graph, one can find the short-
est path by running Dijkstra’s algorithm [3]
on it. The shortest path has been used in
robot motion planning. This was identified in
1979 in Lozano-Perez and Wesley’s work [5].
The visibility graph can also be used to solve
the art gallery problem by finding the min-
imum dominating set of the visibility graph
(NP-hard). More recently, visibility has been
used in pursuer-evader problems. Finally, the
visibility complex, which contains more infor-
mation than the visibility graph, has been used
in illumination problems [9].

3 2D Visibility versus 3D
Visibility

Things are very different when we turn to 3D
scenes. The path planning method described
above does not generalize simply to 3D where
the problem has been shown to be NP-complete
[6, 7]. Furthermore, in 3D, the term “visibility
graph” often refers to the abstract graph where
each object is a node, and where arcs join mu-
tually visible objects. This is however not the
direct equivalent of the 2D visibility graph.

We enumerate here some points which make
that the difference between 2D and 3D visi-
bility can not be summarized by a simple in-
crement of one to the dimension of the prob-

lem. This can be more easily envisioned in line
space. Recall that the atomic queries in visibil-
ity are expressed in line-space (first point seen
along a ray, are two points mutually visible?).

First of all, the increase in dimension of line-
space is two, not one (in 2D line-space is 2D,
while in 3D it is 4D). This makes things much
more intricate and hard to apprehend.

A line is a hyperplane in 2D, which is no
more the case in 3D. Thus the separability
property is lost: a 3D line does not separate
two half-space as in 2D.

A 4D parameterization of 3D lines is not
possible without singularities [4].

Visual events are simple in 2D: bitangents
lines or tangent to inflection points. In 3D
their locus are surfaces which are rarely pla-
nar (IEEE or visual events for curved objects)
[4].

All these arguments make the sentence the
generalization to 3D is straightforward a doubt-
ful statement in any visibility paper.

4 3D Visibility Graph

As stated in section 3, we can not simply ex-
tend the concept of visibility graph from 2D to
3D. The problem is that the traditional defini-
tions of visibility cannot be used for defining a
meaningful and applicable structure as visibil-
ity graph. For one thing, the number of rays
between two objects might be countless. For
another, it seems impossible to represent the
visibility relations of a 3D scene in a planar
graph.

These problems lead us to reconsider the
basic concepts of visibility in 3D space. In 2D
space, we say that two points are mutually vis-
ible or see each other if there is a straight line
not intersecting any other part of the configu-
ration from one object to the other. If we want
to use this concept in 3D, instead of using the
line, we must use the plane. The reason is that
the main property which explains why 3D visi-
bility is much harder than in 2D, is separability
property: In 2D, a line separates the plane into
two half-planes. No such property holds in 3D

1Some work has been done for finding the partial visibility graph where only the tangents around obstacles are
included since the shortest path would not need other visibility edges to the obstacle [10].



because lines are no longer hyperplanes. This
leads us to considering planes: in 3D, planes
have this property, i.e. each plane separates
the space into two half-space.

4.1 Some Definitions

Now we replace the role of the plane in 3D with
that of line in 2D and change some basic defi-
nitions in visibility. first we review these defi-
nitions in 2D scenes:

• A ray is a half-line starting from a point

• A segment is a part of line bounded with
two points in that line

• The view from a point in some direction is
the first object intersecting the line start-
ing from the point in the given direction.

• We say two points are mutually visible
if the line segment defining by them are
not intersected with any objects except
possibly at the end points.

Now we give what we think is a suitable defi-
nition for visibility in 3D. As we said we try to
replace the role of line in 2D with plane in 3D:

• A pseudo-ray from point p in the direc-
tion of plane A is an angle surrounded by
two half-line in A starting at p. Notice
that this pseudo-ray is no longer unique.

• We say that a pseudo-ray can see an ob-
ject if the plane of the pseudo-ray inter-
sect the object and the intersecting sec-
tion lies within the angle of the pseudo-
ray.

• A pseudo-segment in a plane is a simple
polygon in that plane. We can imagine
this pseudo-segment as the region sur-
rounded by some pseudo-rays (angles).
In the simplest form, a pseudo-segment is
a triangle in the plane, consisting of three
pseudo-rays with mutual common edges.
In this case, another way to distinguish
a pseudo-segment is by giving its ordered
vertives. Notice that a line is a special
pseudo-segment consisting of two pseudo-
rays (angles) that lie on each other.

• We say that some points are mutually vis-
ible if they are all lie in a same plane and
the pseudo-segment defined by them does
not intersect with any object except pos-
sibly at these points.

We will use the above definitions for building
our new data structure.

4.2 Pseudo-graph

As we mentioned before, because of intricate
relations, it is not possible to represent the vis-
ibility relations of a 3D scene with an ordinary
graph.

We introduce a new structure, called the
pseudo-graph, which like an ordinary graph
consists of vertices and edges, but each edge of
it connects three vertices of the pseudo-graph.
We can think of edges of a pseudo-graph as
pseudo-segments connecting its vertices.

4.3 3D Visibility Graph

Now we define 3D tangent visibility graph as
follows. Consider a collection O of pairwise
disjoint smooth convex objects in a 3D scene.
We define an structure called pseudo-graph,
witch like a ordinary graph consists of ver-
tices and edges, but each edge connects three
vertices of the pseudo-graph. The set of ver-
tices in this graph is O, the convex objects
of the scene. Any common tangent plane of
two objects O1, O2, O3 ∈ O whose tangent
points are mutually visible correspond to an
edge {O1, O2, O3} of the pseudo-graph. Note
that there are at most 8 edges between three
vertices.)

The size of 3D visibility graph of n objects,
is proportional to the number of edges of it and
is limited by O(n3) and Ω(n).

4.4 Application of 3D visibility
Graph

We believe that this pseudo-graph has most of
the properties that visibility graph is reputed
for. For example consider the convex hull of
a set of 3D objects. As we know, in 2D, the
convex hull of a set of objects lies on the visi-
bility graph of those objects. It can be easily



shown that the same property holds for the 3D
visibility graph.

4.5 Construction

Here we present a construction algorithm
for 3D visibility graph which runs in time
O(n3 log n). It is mainly an extension of Lee’s
algorithm for building visibility graphs to 3D
scenes. For each pair of objects O1 and O2, sort
all the planes which are tangent O1 and O2 and
one other object in angular order with respect
to a fixed plane tangent to O1 and O2. This is
equivalent to sweeping the space with a rotat-
ing plane while remaining tangent to O1 and
O2 and visiting each of the objects when the
sweep-plane becomes tangent to it. We keep
track of the order of intersected objects made
by the sweep-plane. Like the Lee’s algorithm,
we maintain an ordered list which has current
tri-tangents. When a new tri-tangent plane ap-
pears, we check it with other tri-tangents in the
list and we insert it or remove it from the list.

The time needed for sorting the tangent
planes is O(n log n), as there are O(n) of these
planes. Each of O(n) inserting and removing
operations takes O(log n) time. So each sweep-
ing process takes O(n log n) time. As there
are O(n2) pairs of objects, the total algorithms
takes O(n3 log n) time.

Although the algorithm given above is not
naive, it is not optimal. We note that it might
be possible to improve the running time to be
O(k + n2 log n), where k, O(n3), is the num-
ber of visibility edges of pseudo-graph, by us-
ing pseudo-triangulation based on the work of
[10].

5 Conclusion

After reviewing the concept of visibility graph
in 2D, we defined 3D visibility graph, which
is an structure that plays the role of visibility
graph for 3D scenes. We gave an algorithm for
building it in time O(n3 log n). We believe that
3D visibility graph can be used in many 3D ge-
ometric problems. For an example observe that
the convex hull of a set of objects is laying on
the 3D visibility graph of the scene.

As we mentioned in section 4.5, it might

be possible to improve the running time to be
O(n2 log n + k), where k is the number of visi-
bility edges of pseudo-graph, by using pseudo-
triangulation based on the work of [10]. We
also need to find some application for 3D visi-
bility graph and our new visibility relations.
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