
Improving the Construction of
the Visibility–Voronoi Diagram

Mojtaba Nouri Bygi∗ Mohammad Ghodsi†

Abstract

Ron Wein et al. [4] introduced the Visibility-Voronoi
diagram for clearance c, denoted by V V (c), which is
a hybrid between the visibility graph and the Voronoi
diagram of polygons in the plane. It evolves from
the visibility graph to the Voronoi diagram as the pa-
rameter c grows from 0 to ∞. This diagram can be
used for planning natural-looking paths for a robot
translating amidst polygonal obstacles in the plane.
They also proposed an algorithm that is capable of
preprocessing a scene of configuration-space polygo-
nal obstacles and constructs a data structure called
the VV-complex.

As [4] used a straightforward approach for con-
structing VV(c)-diagram, its construction time is
O(n2 log n), which is not optimum. In this paper we
improve this time to O(k log n), where k is the num-
ber of visibility edges, based on the method used for
the preprocessing of the VV-complex in [4].

1 Introduction

Ron Wein et al. [4] have studied the problem of plan-
ning a natural-looking collision-free path for a robot
with two degrees of motion freedom moving in the
plane among polygonal obstacles. By “natural- look-
ing” they mean that the robot should select a path
that will be as close as possible to the path a human
would take in the same scene to reach the goal config-
uration from the start configuration. They introduced
a new data structure, called the VV(c)-diagram, yield-
ing natural-looking motion paths, meeting all three
criteria mentioned above. It evolves from the visibil-
ity graph to the Voronoi diagram as c grows from 0
to ∞, where c is the preferred amount of clearance.
Beside the straightforward algorithm for construct-
ing the VV(c)-diagram for a given clearance value c,
they also propose an algorithm for preprocessing a
scene of configuration-space polygonal obstacles and
constructing a data structure called the VV-complex.

∗Department of Computer Engineering, Sharif Univer-
sity of Technology, P.O. Box 11365-9517, Tehran, Iran,
nouribaygi@ce.sharif.edu

†Department of Computer Engineering, Sharif Univer-
sity of Technology, and IPM School of Computer Science
(No. CS1382-2-02), P.O. Box 19395-5746, Tehran, Iran,
ghodsi@sharif.edu

The VV-complex can be used to efficiently plan mo-
tion paths for any start and goal configuration and
any given c.

In this paper we reduce the time needed to con-
struct the VV(c)-diagram for a given c-value to
O(k log n) where k is the number of visibility edges
of the polygons, based on the method used for the
preprocessing of the VV-complex in [4].

2 Constructing the VV(c)-Diagram

Here we give the outline of our algorithm for con-
structing the VV(c)-diagram of an input set P of pair-
wise interior-disjoint polygons with n vertices in total
for a given c-value, say cm, in O(k log n) where k is
the number of visibility edges of the initial visibility
graph of the polygons.

Our approach is to construct the visibility graph of
the polygons, grow c while stopping at critical events
that would change the visibility graph, until we get
to cm. This approach is very similar to that of [4]
in preprocessing of VV-complex, in which they spend
O(n2 log n) time in computing the validity range of
any possible edge of VV-diagram, while we only need
the valid edges at cm.

We start with a set of visibility edges containing
all pairs of the polygonal obstacles. We also include
the original obstacle edges in this set, and treat our
visibility edges as directed, such that if the vertex u
sees the vertex v, we will have two directed visibility
edges ~uv and ~vu.

As c grows larger than zero, each of the original
visibility edges potentially spawns as many as four
bitangent visibility edges. These edges are the bi-
tangents to the circles Bc(u) and Bc(v) (where Br(p)
denotes a circle centered at p whose radius is r) that
we name ~uvll, ~uvlr, ~uvrl and ~uvrr, according to the
relative position (left or right) of the bitangent with
respect to u and to v.

Let αuv be the angle between the vector ~uv and the
x-axis, and d(u, v) the Euclidean distance between u
and v, then it is easy to see that the two edges ~uvll

and ~uvrr retain the same slope αuv for increasing c-
values. The slope of the other two edges changes as
c grows: ~uvrl rotates counterclockwise and ~uvlr ro-
tates clockwise by the same amount, both around the
midpoint 1

2 (u+ v) of the original edge, so their slopes

1

become αuv + ϕuv(c) and αuv − ϕuv(c), respectively,
where ϕuv(c) = arcsin(2c

d(u,v)).
Note that for a given c-value, it is impossible that

all four edges are valid (at most three can be valid,
and the ll- and rr-edges can never be valid simulta-
neously). Our goal is to proceed in growing c while
keeping track of valid visibility edges until we reach
the final cm value.

If an edge is valid, then it must be tangent to both
circular arcs associated with its end-vertices. There
are several reasons for an edge to change its validity
status:

• The tangency point of e to either Bc(u) or to
Bc(v) leaves one of the respective circular arcs.

• The tangency point of e to either Bc(u) or to
Bc(v) enters one of the respective circular arcs.

• The visibility edge becomes blocked by the inte-
rior of a dilated obstacle.

The important observation is that at the moment that
a visibility edge ~uv gets blocked, it becomes tangent
to another dilated obstacle vertex w, so essentially
one of the edges associated with ~uv becomes equally
sloped with one of the edges associated with ~uw. The
first two cases mentioned above can also be realized
as events of the same nature, as they occur when one
of the ~uv edges becomes equally sloped with ~uwlr (or
uwrl), when v and w are neighboring vertices in a
polygonal obstacle.

This observation stands at the basis of the algo-
rithm we devise for constructing the VV(c)-diagram:
We sweep through increasing c-values, stopping at
critical visibility events, which occur when two edges
become equally sloped, until we reach the goal clear-
ance cm. We note that the edge ~uvll (or ~uvlr) can only
have events with arcs of the form ~uwll or ~uwlr, while
the edge ~uvrl (or ~uvrr) can only have events with arcs
of the form ~uwrl or ~uwrr. Hence, we can associate two
circular lists Ll(u) and Lr(u) of the left and right-
edges of the vertex u, respectively, both sorted by the
slopes of the edges. Two edges can have an event at
some c-value only if they are neighbors in the list for
infinitesimally smaller c. At these event points, we
should update the validity of the edges involved, and
also update the adjacencies in their appropriate lists,
resulting in new events.

In the rest of the paper, we will use the notation
~uv to represent any of the four edges ~uvll, ~uvlr, ~uvrl

or ~uvrr. Moreover, we will use L(u) to denote either
Ll(u) or Lr(u) (whether we choose the left or the right
list depends on the type of edge involved).

As mentioned in [4], an endpoint of a visibility
edge in the VV(c)-diagram may also be an intersec-
tion point of dilated obstacle boundaries, which by
definition also lies on the Voronoi diagram. Such an
endpoint that lies on the Voronoi diagram is called a

chain point, as it can be associated with a Voronoi
chain in fact, as a Voronoi chain is either monotone
or has a single point with minimal clearance, we can
associate at most two chain points with every Voronoi
chain. Our algorithm will also have to compute the
validity for edges connecting a chain point with a di-
lated vertex or with another chain point. For that
purpose, we will have a list L(p) of the outgoing edges
of each chain point p, sorted by their slopes (notice
that we do not have to separate the “left” edges from
the “right” edges in this case).

2.1 Construction

2.1.1 Initialization

Our algorithm start as follows:

1. Compute the visibility graph of the polygonal ob-
stacles. This can be done in O(k + n log n) [3]
where k is the number of visibility edges, but a
simpler O(k log n) algorithm [3] is also sufficient
for our algorithm.

2. Examine each bitangent edge in the visibility
graph: For an infinitesimally small c only one
of the four edges it spawns is valid - assign true
to be the value of the validity of this edge.

3. Initialize an empty event queue Q, storing events
by their increasing c-order. Hereafter, we only
add events with c-order less than cm to the queue.

4. For each obstacle vertex u:

(a) Construct Ll(u) and Lr(u), based on the
edges obtained in step 2. This can be done
in total k log n time.

(b) Examine each pair of the neighboring edges
e1, e2 in Ll(u) and in Lr(u), compute the
c-value at which e1 and e2 become equally
sloped, if one exists. If the computed c is less
than cm, insert the visibility event 〈c, e1, e2〉
to Q. There are O(k) of such events and
updating the queue takes O(k log n) time.

5. Compute the Voronoi diagram of the polygonal
obstacles (O(n log n))

6. For each non-monotone Voronoi chain, locate the
arc a that contains the minimal clearance value
cmin of the chain in its interior, and insert the
chain event 〈cmin, a〉 to Q.

2.1.2 Event Handling

While the event queue is not empty, we proceed by
extracting the event in the front of Q, associated with
minimal c-value, and handle it according to its type.
We note that the visibility events (created, for exam-
ple, by step 4b of the initialization stage) always come

2

in pairs - that is, if ~uv becomes equally sloped with
~uw, we will either have an event for the opposite edges
~vu and ~vw, or for the opposite edges ~wu and ~wv. We
therefore handle a pair of visibility events as a single
event:

Visibility event: The edges ~uv and ~uw become
equally sloped for a clearance value c′, and at the same
time the edges ~vu and ~vw become equally sloped.

1. The edges ~uv and ~vu are blocked. Delete them
from the edges of the visibility graph.

2. Remove the other event involving ~uv (based on
its other adjacency in L(u)) from Q, and delete
this edge from L(u). Examine the new adjacency
created in L(u) and insert its visibility event if is
less than cm into the event queue Q.

3. Repeat step 2 for the opposite edge ~vu.

4. If the edge ~uv used to be valid before it was
deleted and the edges ~uw and ~vw do not have
a true validity value yet, assign it to true, be-
cause these edges have become bitangent for this
c-value.

The operations above can be done in O(k log n) be-
cause each O(k) edges of the visibility graph can be
blocked at most once and deleting such edge would
produce O(1) new events.

Chain event: The value c equals the minimal
clearance of a Voronoi chain χa, obtained on the arc
a, which is equidistant from an obstacle vertex u and
another obstacle feature. Let z1 and z2 be a’s end-
points.

1. Initiate two chain points p1(χa) and p2(χa) as-
sociated with the Voronoi chain χa. As c grows,
p1(χa) moves toward z1 and p2(χa) moves toward
z2.

2. For all edges e = ~ux incident to u, compute the
c-value c′ for which e becomes incident to one of
the chain points pi(χa) of a. If c′ is less than
cm and is within the range of the Voronoi arc a,
then insert the tangency event 〈c′, e, pi(χa)〉 to
the event queue.

3. If a is equidistant to u and to another obstacle
vertex v, repeat the last step for the edges inci-
dent to v.

4. Let c1 and c2 be the clearance values of z1

and z2, respectively. Insert the endpoint events
〈c1, p1(χa), z1〉 and 〈c2, p2(χa), z2〉 to the event
queue.

As each edge of the visibility graph is became inci-
dent to a chain point at most twice (one for each of its

vertices), so the total time spent in processing chain
events is O(k log n).

When dealing with a chain event, we introduced
two additional types of events: tangency events and
endpoint events. We next explain how we deal with
these events.

Tangency event: An edge e = ~ux (the endpoint x
may either represent a dilated vertex or a chain point)
becomes tangent to Bc(u) at a chain point p(χa) as-
sociated with the Voronoi arc a.

1. Remove all events involving the edge e from Q.

2. The edge e is blocked, so remove this edge from
L(u). Note that it is possible to disregard the
new adjacency created in u’s list.

3. Insert a reincarnate of e to L(p(χa)), and as-
sign its validity value to true. Examine the new
adjacencies in L(p(χa)) and insert new visibility
events, if they are smaller than cm, into Q.

4. Replace the edge ~xu in L(x) by ~xp(χa) and
recompute the critical c-values of the visibility
events of this edge with its neighbors. Modify
the corresponding visibility events in Q.

5. In case x is a dilated obstacle vertex, we may have
another tangency event in the queue, associated
with ~xu, which was computed under the (false)
assumption that tangency point of the edge on
x coincides with a chain point before the one on
u does. In this case, we have to locate the tan-
gency event from Q that is associated with ~xu
and recompute the c-value associated with it.

Again, each edge of the visibility graph leaves a
L(u) list and enters a L(χa) list at most twice, so
the total time spent in processing tangency events is
O(k log n).

Endpoint event: A chain point p(χa) reaches the
endpoint z of a. If z is a local maximum of the clear-
ance function, there are multiple event points associ-
ated with it, so we should just assign a false validity
value to all edges in the edge lists of all chain points
coinciding with z and delete them from the visibility
graph. If z is not a local maximum, we have to deal
with one of the following two cases:

• z is incident only to two Voronoi arcs a and a′

belonging to the same chain (χa = χa′). In this
case the chain point p(χa) is transferred from a to
a′, and we only have to examine the adjacencies
in L(p(χa′)) and modify the corresponding visi-
bility events in the queue (as the slopes of these
arc become a different function of c from now on).
We also have to deal with the opposite edges, as
we did in step 4 of the tangency-event procedure.
If one of the polygon features associated with the

3

new arc a′ is a vertex u, iterate over all edges in-
cident to u and check whether each edge has a
tangency event in the range of the new Voronoi
arc a′ – if so, add this event to the queue Q. If
a′ is associated with two vertices u and v, repeat
the procedure above for v as well.

• z is the endpoint of the chain χa (i.e. a Voronoi
vertex) and it is not a local maximum of the
clearance function. In this case we may have sev-
eral chains χ1, χ2 . . . ending at z, having a syn-
chronous endpoint event, and a single monotone
chain χ̂ beginning at z:

1. Create a new chain point p(χ̂) associated
with the monotone chain.

2. Assign the validity value of each edge in
L(p(χ1)),L(p(χ2)), . . . to false at clearance
c, where c is the clearance value at z. Re-
move all visibility events associated with
these edges from Q.

3. Insert reincarnates of all edges from
L(p(χ1)) into L(p(χ̂)), and assign their va-
lidity value to true. Examine all adjacencies
in L(p(χ̂)) and add the appropriate visibil-
ity event to Q. We also have to deal with
the opposite edges, as we did in step 4 of
the chain-event procedure.

Note that in the last step all edge lists of the
chain points ending at z should be equal (L(p(χ1)) =
L(p(χ2)) = . . .), thus we consider only one of these
lists. This event should be dealt with before any vis-
ibility event occurring at the same c-value, in order
to avoid handling visibility events involving duplicate
edges. In fact, when we have several events occurring
at the same c-value, we deal with endpoint events first,
then with visibility events, then chain events and fi-
nally tangency events.

As we stated earlier, the complexity of each obstacle
is O(1), so the complexity of each Voronoi chain is
O(1). Therefore the number of chain events is O(n)
in total and O(1) for each Voronoi chain, and the
number of times an edge would participate in a chain
event is O(1), so the time needed to process all the
chain events is O(k log n).

2.2 Complexity Analysis and Proof of Correctness

As we mentioned before, the algorithm described in
section 2 is based on the algorithm given in [4] for
preprocessing stage of computing VV-complex, so the
proof of correctness would be similar.

Proposition 1 The construction takes O(k log n) in
total, where n is the total number of obstacle vertices
and k is the number of visibility edges in the visibility
graph.

Proof: We first have to compute the visibility
graph, which can be performed in O(k +n log n) time
[1], though the O(k log n) is sufficient for us. This also
accounts for the time needed to construct the initial
edge lists L(u) for each obstacle vertex u (there are
k edges and n edge lists) and label the valid visibility
edges. The construction of the Voronoi diagram can
be performed in O(n log n), and the complexity of the
diagram (the number of arcs) is linear.

After the initialization, the priority queue Q con-
tains O(1) events associated with each of the O(k)
visibility edges, and in addition O(n) chain events.
Any operation on the event queue thus takes O(log n).
The initialization takes O(k log n) time in total.

As the construction algorithm proceeds, it starts
handling events: In total we have O(k) visibility
events, each of them can be handled in O(log n) time.
There are O(n) chain events, and as we said earlier,
they can be handled in O(k log n) time in total. Each
visibility edge can participate in a tangency event
at most twice , so in total there are O(k) tangency
events, each of them can be handled in O(log n) time.
Finally, there are O(n) endpoint events and they will
deal with at most O(k) visibility edges, so we need
O(k log n) time to handle them in total.

3 Conclusion

It this paper we studied VV(c)-diagram designed by
Wein et al. [4] for finding natural-looking paths
amid polygonal obstacles. We presented an algo-
rithm for constructing this data structure that runs
in O(k log n) time, where n is the number of vertices
of the polygons and k is the number of visibility edges
of the visibility graph of the polygons, which is an im-
provement to current result that works in O(n2 log n)
time.

It seems that the VV(c)-diagram for a fixed c-value
may be constructed in O(k + n log n) time, based on
the work of [2], so it may seem we do not need any
preprocessing stage, and it is better to construct the
VV(c)-diagram from scratch whenever we are given a
preferred clearance value.

References

[1] S. K. Ghosh and D. M. Mount. An output sensitive
algorithm for computing visibility graphs. Proc. 28th
Annual IEEE Sympos. Found. Comput. Sci., 1987.

[2] M. Pocchiola and G. Vegter. The visibility complex.
International J. Comput. Geom., 1996.

[3] M. Pocchiola and G. Vegter. Computing the visibility
graph via pseudo-triangulation. In Proc. Annu. ACM
Sympos. Comput. Geom., 1995.

[4] R. Wein, J. P. van den Berg, and D. Halperin. The
Visibility–Voronoi Complex and Its Applications. In
Proc. Annu. ACM Sympos. Comput. Geom., 2005.

4

