
CCCG 2011, Toronto ON, August 10–12, 2011

Euclidean Movement Minimization

Nima Anari∗ MohammadAmin Fazli† Mohammad Ghodsi†‡ Pooya Jalaly Khalilabadi†

MohammadAli Safari†§

Abstract

We consider a class of optimization problems called
movement minimization on euclidean plane. Given a set
of nodes on the plane, the aim is to achieve some spe-
cific property by minimum movement of the nodes. We
consider two specific properties, namely the connectiv-
ity (Con) and realization of a given topology (Topol).
By minimum movement, we mean either the sum of all
movements (Sum) or the maximum movement (Max).
We obtain several approximation algorithms and some
hardness results for these four problems. We obtain an
O(m)-factor approximation for ConMax and ConSum
and an O(

√
m/OPT)-factor approximation for Con-

Max. We also extend some known result on graphical
grounds in [1, 2] and obtain inapproximability results
on the geometrical grounds. For the Topol problem
(where the final decoration of the nodes must corre-
spond to a given configuration), we find it much simpler
and provide FPTAS for both Max and Sum versions.

1 DIntroduction

Consider a number of moveable robots distributed over
a plane in a far-flung manner. Each robot has an an-
tenna with a limited maximum range, denoted by rmax.
Robot s can communicate directly with robot t if and
only if their distance is less than rmax. Robot s can also
communicate indirectly with t if there is an ordered set
of robots s = r1, r2, · · · , rp = t so that each ri can di-
rectly communicate with ri+1. With this explanation,
we can form a dynamic graph whose vertices are the
moveable robots on the plane and edges are formed by
connecting each robot to every other robot residing in
the disk with radius rmax around it. These geometric
graphs are called UDGs (Unit Disk Graphs).

∗Computer Science Division, University of California Berkeley,
email: anari@cs.berkeley.edu

†Department of Computer Engineering, Sharif University
of Technology, emails: fazli, jalaly@ce.sharif.edu, ghodsi, sa-
fari@sharif.edu

‡Institute for Research in Fundamental Sciences (IPM),
Tehran, Iran. This author’s research was partially supported by
IPM, under grant No: CS1389-2-01

§The research was partially supported by the Institute for Re-
search in Fundamental Sciences under grant No: CS1389-4-09

Definition 1 Given some points p1, ..., pm in the
euclidean plane, the UDG on these points is defined as
a simple graph G = (V,E), where V = {1, ..., m} and
E = {{i, j} | |pi − pj |2 ≤ 1}

Suppose that robots are initially located at points
p1, p2, · · · , pm. It is clear that all robots can commu-
nicate directly or indirectly with each other if and only
if their corresponding UDG is connected. Our aim is to
have the robots move in a way that they form a con-
nected UDG after relocation (the points p∗1, p

∗
2, · · · , p∗m).

We also want to efficiently optimize the travel distance
of the robots before they reach their final locations. The
term efficiently can be defined in many ways. In this
paper, we consider two of such measures: namely Sum
and Max. In Sum, the goal is to minimize the sum of
the movements of all robots, or formally to minimize∑m

i=1 |p∗i − pi|2. This parameter roughly measures the
total energy consumed by the robots. In Max, the goal
is to minimize the maximum movement of all robots,
i.e. minimizing maxi∈{1,...,m} |p∗i − pi|2. This parame-
ter measures the amount of time needed to reach the
final locations.

Using these two functions, we define two problems:
ConMax and ConSum.

Definition 2 In ConMax (resp. ConSum) we want
to move the robots so as to form a connected UDG and
the optimization goal is Max (resp. Sum).

Each of these problems can be considered in both
graphical or geometrical settings.

Definition 3 In a graphical setting, robots move on a
graph. At first, robots are placed on some vertices of
the graph and at each turn, each robot can move to one
of the adjacent vertices (each edge is considered to have
one unit of length). In geometrical settings, robots are
points belonging to a geometrical space (R2 in this paper)
and are free to move in any direction in the space.

1.1 Other Works

Demaine et al. [1, 2] first introduced movement prob-
lems in graphical settings and extensively studied them.
They defined 15 types of movement problems (borrow-
ing from their terminology, from here on we use the

23rd Canadian Conference on Computational Geometry, 2011

words robot and pebble interchangeably). They con-
sider five properties: connectivity, directed connectiv-
ity, path, independent set and matching and consider
three objective functions: maximum movements, total
movement and number of pebbles that move. This re-
sults in the following 15 problems: ConMax, ConSum,
ConNum, DirConMax, DirConSum, DirConNum,
PathMax, PathSum, PathNum, IndMax, IndSum,
IndNum, IndMax, IndSum, IndNum.

Most of their salient results were proven in the con-
text of graphs. They proposed an O (√

m
OPT

)
-factor ap-

proximation algorithm for ConMax and PathMaX(m
is the number of pebbles) and proved Ω

(
n1−ε

)
inap-

proximability result for ConSum and DirConMax (n
is the number of vertices in the ground graph) in graph-
ical settings. They also gave an O (1)-approximation for
IndMax wit an additive error of O (1) in geometrical
settings.

Note that all the algorithms presented in [1, 2] are
in fact polynomial in n, the number of the nodes in
the base graph, which makes them inefficient when
n À m which is a realistic assumption. Dealing with
this, given that the number of mobile agents is typically
much smaller than the complexity of the environment,
in [3] the authors turn to fixed-parameter tractability.
They characterize the boundary between tractable and
intractable movement problems in a very general set
up and show that many movement problems of interest
have fixed parameter tractable algorithms.

1.2 Our Results

Our results include algorithms for ConMax, ConSum,
TopolMax, TopolSum and an inapproximability re-
sult for ConMax.

In section 2.1 we prove (2 −
√

2
2)-inapproximability

for ConMax in geometric settings which extends the
hardness result of Demaine et al. [1, 2] about ConMax
in graphical settings.

Theorem 1 There is no polynomial algorithm for
ConMax in geometrical settings with an approximation
factor of less than 2−

√
2

2 , unless P = NP

In section 2.2 and 2.3 we give approximation al-
gorithms for ConMax and ConSum on geometrical
grounds. We present O (m)-factor approximation algo-
rithm for both problems which improve the O (√

m
OPT

)
-

approximation algorithm (with additive error of O (1))
of Demaine et al. [2] in the cases where OPT is very
small.

Theorem 2 There is an O (m)-factor approximation
algorithm for ConMax and ConSum on geometrical
grounds.

In the final part of this paper, we introduce a new
kind of movement problems which is more constrained,
in some sense, than the previously proposed problems:
TopolMax and TopolSum.

Invariant 1 In problems TopolMax and Topol-
Sum, we are given m initial points p1, . . . , pm ∈ R2 and
a set of edges E ⊆ {{i, j} | i, j ∈ {1, . . . , m}}. We are
supposed to determine m points p∗1, . . . , p

∗
n ∈ R2 in such

a way that the UDG defined on p∗1, . . . , p
∗
m contain all of

the edges in E. The objective function we are trying to
minimize can be either MAX or SUM which results in
two different problems we call TopolMax and Topol-
Sum.

Although our results are stated in two dimensions, most
of them can be easily extended to higher dimensions. In
particular all of our approximation algorithms work for
higher dimensions too.

Theorem 3 There is a FPTAS for the problems
TopolMax and TopolSum.

2 ConMax and ConSum

2.1 Hardness Results

In this section we prove Theorem 1. First, we prove
that ConMax is 2-approximable on UDGs (graphical
ground) only if P=NP. Then, with minor modifica-
tions, we prove Theorem 1. Our main idea is a proof of
Demaine et al. in [1, 2] for hardness of ConMax prob-
lem in graphical settings, but our case is more involved
and needs many modifications.

For this, we reduce the hamiltonian cycle problem
on 3-regular planar graphs which is known to be NP-
hard [7]. Let us call this problem 3PHP.

We first start with a useful way of embedding planar
graphs:

Lemma 4 (Valiant [6]). A planar graph G with max-
imum degree 4 can be embedded in the plane using
O (|V |) area in such a way that its vertices are at inte-
ger coordinates and its edges are drawn so that they are
made up of line segments of the form x = i or y = j,
for integers i and j.

There is also a polynomial time algorithm to compute
such an embedding [8].

We are now ready to prove the hardness of the Con-
Max problem on UDG grounds.

Theorem 5 There is no polynomial algorithm for
ConMax on UDG graphical grounds with approxima-
tion factor less than 2 unless P = NP
Proof. We prove this by reducing 3PHP. Assume that
we have an instance of 3PHP problem; a 3-regular pla-
nar graph G in which we want to check for the existence

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 1: Graph G and its transformation process.

of a hamiltonian path between two specified vertices s
and t. See Figure. 1(a) for an example.

First we use Lemma 4 to get an embedding H of G
with integer coordinate vertices and horizontal or verti-
cal edges (Figure. 1(b)).

Next we scale up all vertex coordinates by 6.0 to
make each edge six times longer. The length of every
edge e = (u, v) is now a multiple of 6.0. We put new
vertices on every integer-coordinate point between u
and v. So, the edge e = (u, v) is replaced by a path
P e = u = v0, v1, · · · , v6k−1, v6k = v (notice that the
distance between vi and vi+1 is exactly one).

We color vertices u = v3, v6, ..., v3i, ..., v6k−3, v6k =
v as black and the remaining vertices as white. See
the resulting graph G in Figure. 1(d) (in this figure we
have scaled up everything by 3 and not 6 for clarity and
better understanding).

Since the degree of each vertex in the resulting UDG
is at most 3, we can attach a new leaf to each black
vertex via a unit length vertical or horizontal edge. We
color these new leaves as gray and call the resulting new
UDG G′.

Finally, we place one pebble on s and t and each gray
vertex of G′. We also place two pebbles on each black
vertex of G′ except s and t. We show that G has a hamil-
tonian path between s and t if and only if the answer
of ConMax on G′ is 1. If there is a hamiltonian path
between s and t in G, we can move the pebble on each
gray vertex to its neighboring vertex in V (G′) and move
pebbles on each black vertex to its neighboring vertices
along the path corresponding to G’s hamiltonian path
that induce a connected subgraph in G′. For the reverse
side, we show that if G does not have a hamiltonian path
between s and t then the value of ConMax is at least
2.0.

We show that when G is not hamiltonian, then es-
tablishing connectivity in G′ requires a pebble in a gray
vertex to move to a white vertex which requires a move-
ment of 2.0.

Figure 2: The 3-degree vertex in minimum maximum
degree spanning tree viewed in G′.

Consider the optimal connectivity establishment in
G′. This induces a connected subgraph of G which is
not a hamiltonian path and, therefore, has a maximum
degree at least 3. Let u be a vertex with degree 3. It
has only 2 pebbles. So, one of its neighboring white
vertices, say v, can not be covered by the pebbles on it.
If we remove the edge between u and v, we would have a
subtree T ′ in which we need at least 2 moves to connect
its pebbles to u’s pebbles. This completes the proof. It
is clear that nothing would be changed in this proof if
we replace general UDG graphs with their specific type
grids because we used only vertical/horizontal edges and
integer coordinated vertices. ¤

We can also use the above proof for the (2 −
√

2
2)-

inapproximability of ConMax on geometrical grounds.

Proof. (of Theorem 1) The proof structure is almost
identical to the proof of Theorem 5. In Figure. 2, the
distance between vertex u and vertex v is 3. In proof of
Theorem 1 we had to move pebbles only in integer units
of length and the uv path was not covered by the pebbles
placed on u. So to connect T ′’s pebbles to u’s pebbles,
we had to move them 2 units and the approximation
factor was at least 2.

This is different on geometrical ground as u’s two peb-
bles can move to every point of the plane without any
limitation. So, there would be a movement of them
in which the minimum coverage of these pebbles over
all 3 outgoing paths of u is

√
2

2 (For example when they
move in north-west and south-east direction with 45 de-
gree slope). So the maximum of minimum coverage over
these 3 paths by u’s pebbles is at most

√
2

2 and again
suppose that this minimum coverage is being happened
for uv path. This completes the proof because in this
situation the movement of T ′’s pebbles would be at least

23rd Canadian Conference on Computational Geometry, 2011

3−1−
√

2
2 = 2−

√
2

2 and this leads to the approximation
factor 2−

√
2

2 . ¤

2.2 O(m) approximation for ConMax

If two pebbles are adjacent at the end then their original
distance should be at most λ = 2OPT + 1. This means
that if we scale down all distances by a factor of 1

λ then
the corresponding UDG would be connected. This is
the idea behind the algorithm: centered at one of the
points, scale down all distances by a factor 1

λ and move
every point to its new location after scaling. This yields
an O(m)-factor approximation. The rest of details is
left to the journal version of this paper.

2.3 O(m) approximation for ConSum

We construct a complete weighted graph in which the
weight of (i, j) is defined as max(0, (|pi − pj |2 − 1)/2).
Then we find a Minimum Spanning Tree (MST) of this
graph. It can be shown that two fifths the weight of the
MST is a lower-bound for the optimum solution.

Next, we do the following operation for each edge
(i, j) of the MST: Removing the edge gives us two con-
nected components. We translate each connected com-
ponent along the edge pipj by a distance of max(0, (|pi−
pj |2−1)/2). Note that among the edges of the tree, only
the distance between pi and pj is changed.

After all these operations, all edges of the MST be-
come present in the resulting UDG. The total sum of
movements is at most m times the weight of the origi-
nal MST, hence an O (m)-approximation. More details
are left to the journal version of this paper.

3 Predetermined Topology

Assume that we are given m different points
p1, . . . , pm ∈ R2. The goal is to make the UDG de-
fined on these points have certain properties. One of the
properties that might be desirable for the UDG to have,
is to have it contain a certain predetermined graph.

Clearly one can assume that the given topology E
is connected; otherwise, the problem can be solved for
each connected component separately, and the solutions
can be combined together. Hence, from now on we will
assume that E is connected.

The main result we obtain is that there is a FPTAS
for each one of these problems. Our FPTAS’s use the
Ellipsoid method as a blackbox.

Remark 1 The Ellipsoid method works with a sepa-
ration oracle defined on a convex set; that is an oracle
which when given a point p determines whether it’s in-
side the convex set, and if the answer is false, returns
a hyperplane separating the point and the convex set.
Given a convex body C ⊂ Rn and an initial ellipsoid E0

containing C, and an arbitrary positive number V, the
Ellipsoid method either finds a point in C, or finds
out that the volume of C is less than V. The time it
takes for the Ellipsoid method to run is bounded by a
polynomial in n and log(Vol(C)/V).

3.1 FPTAS for TopolMax

In this section we will show how TopolMax can be
approximated using the Ellipsoid method.

Our algorithm uses some of the results and tools from
the O (m) approximation algorithm for ConMax, in-
cluding the definition and properties of the geometrical
transformation homothety. For details refer to the jour-
nal version of this paper.

For two given points pi and pj to become at most
1 unit apart (in the Euclidean metric), one should be
moved by at least eij = max(0, (|pi − pj |2 − 1)/2).

Now given an instance of TopolMax define O to be
max{i,j}∈E eij . Clearly O is a lower-bound for OPT .

Lemma 4 An instance of TopolMax can be solved by
a sum of displacements of 2(m− 1)O.

The main idea used behind the proof is exactly the
same as the one used in ConMax, namely the use of
homotheties.

Let’s formulate TopolMax as a linear program.
This linear program is exact, but unfortunately has in-
finitely many constraints. The following simple lemma
forms the basis of this linear program.

Lemma 5 For a vector v ∈ R2, the inequality |v|2 ≤ d
holds if and only if for each unit vector u ∈ S1 (S1 is
the unit circle), the inequality u · v ≤ d holds.

Now let’s formulate our problem as a non-linear pro-
gram, and then convert it to a linear program. We can
define the variables x1, . . . , xm and y1, . . . , ym to be the
final coordinates of the points; i.e. p∗i = (xi, yi). Our
problem can be formulated like the following

Minimize s

Subject To |pi − p∗i |2 ≤ s ∀i ∈ {1, . . . , m}
|p∗i − p∗j |2 ≤ 1 ∀{i, j} ∈ E

Note that this formulation can be completely written
in terms of x1, . . . , xm and y1, . . . , ym; we can simply
replace each p∗i by (xi, yi). Now applying the previous
lemma to this formulation, we can rewrite it like the
following

Minimize s

Subject To (p∗i − pi) · u ≤ s ∀i ∈ {1, . . . , m}, u ∈ S1

(p∗i − p∗j) · u ≤ 1 ∀{i, j} ∈ E, u ∈ S1

The new formulation is a linear program (although, with
infinitely many constraints), since inner product is a

CCCG 2011, Toronto ON, August 10–12, 2011

bilinear operator. To use the Ellipsoid method on
this new formulation, we should first remove s. For
each s ∈ R≥0, define Ls to be the convex set in R2m

defined by the constraints

(p∗i − pi) · u ≤ s ∀i ∈ {1, . . . , m}, u ∈ S1

(p∗i − p∗j) · u ≤ 1 ∀{i, j} ∈ E, u ∈ S1

Ls is the intersection of infinitely many half-planes.
Hence, it is convex. The optimum solution of Topol-
Max is the minimum s for which Ls is nonempty.

Because of the constraints (p∗i − pi) · u ≤ s, we can
find a sphere surrounding Ls. This sphere is centered
at the point (p1, . . . , pm) ∈ R2m, and its radius is

√
ms.

That is because

|(p∗1, . . . , p∗n)− (p1, . . . , pm)|2 =
√ ∑

i∈{1,...,n}
|p∗i − pi|22 ≤

√
ms2 =

√
ms

Since this sphere can be surrounded by a hypercube
with a side length of 2

√
ms, the volume of this sphere

is at most (2
√

ms)2m.
Note that using the previous lemma, existence of a

separation oracle for Ls becomes obvious. In fact, we
just have to check the unit vectors u which are parallel
to the vectors (p∗i − pi) and the vectors (p∗i − p∗j).

We have all of the things we need for the Ellipsoid
method, except V, the lower-bound on the volume of
Ls. Note that Ls ⊆ Lt for s ≤ t. So if we obtain a
lower-bound on the volume of Ls for one s, that lower-
bound also works for every Lt for which t ≥ s. Let
OPT denote the optimum solution of TopolMax. Let
s∗ = (1 + δ)OPT . Our goal is to derive a lower-bound
on the volume of Ls∗ .

Lemma 6 The volume of Ls∗ is greater than or equal
to (δOPT

2m)2m.

Proof. Since LOPT is nonempty, one can find a point
(q1, . . . , qm) ∈ LOPT ⊆ Ls∗ ⊂ R2m.

Let Hα denote the α-homothety with respect to q1.
Consider the points Hα(q1), . . . , Hα(qm). Since each

qi can be reached from q1 by a path consisting only of
the edges in E, we have |qi − q1|2 ≤ m− 1. So

|Hα(qi)− qi|2 = (1− α)|qi − q1|2 ≤ (1− α)(n− 1)

Since |qi − pi| ≤ OPT , we have |Hα(qi)− pi| ≤ OPT +
(1− α)(m− 1).

Because of the properties of homotheties, for each
{i, j} ∈ E, we have |Hα(qi) − Hα(qj)|2 ≤ α. Now let
r1, . . . , rm be some arbitrary points for which we have
|ri−Hα(qi)|2 ≤ (1−α)/2. For each {i, j} ∈ E, we have

|ri − rj |2 ≤ |Hα(qi)−Hα(qj)|2 + |ri −Hα(qi)|2
+|rj −Hα(qj)|2

≤ α +
1− α

2
+

1− α

2
= 1

We also have

|ri − pi| ≤ |ri −Hα(qi)|+ |Hα(qi)− pi|
≤ 1− α

2
+ OPT + (1− α)(n− 1)

≤ OPT + (1− α)m

This shows that there is a copy of
B(1−α)/2 × · · · ×B(1−α)/2︸ ︷︷ ︸

m

inside LOPT+(1−α)m, where

Bx shows a 2-dimensional ball of radius x. Since
Vol(Bx) = πx2 ≥ x2, we have

Vol(LOPT+(1−α)m) ≥ (
1− α

2
)2m

We want α to be chosen in such a way that OPT +
(1 − α)m ≤ s∗. This can be obtained by setting α =
1− (s∗ − OPT)/m. For this α, we have 1− α = (s∗ −
OPT)/m = δOPT/m. Therefore

Vol(Ls∗) ≥ (
δOPT

2m
)2m

¤

Using the lower-bound (δOPT
2m)2m as the parameter V

of Ellipsoid, one can see that the ellipsoid method is
able to find a point inside Ls∗ in time bounded by a
polynomial of m and

log
(2
√

m(1 + δ)OPT)2m

(δOPT
2m)2m

= log(4m
√

m
1 + δ

δ
)2m

= 2m log(4m
√

n
1 + δ

δ
) = O (poly(m, 1/δ))

We don’t know OPT , so we can’t actually set the pa-
rameter V of Ellipsoid to the above lower bound; this
is not a problem, as we can just run the Ellipsoid
method for the time bound we have obtained (which
depends only on m and δ).

Using the previous lemmas it’s easy to see that Algo-
rithm 3.1 is a (1+ ε)-approximation for TopolMax. If
OPT resides in an interval [(1+δ)iO, (1+δ)i+1O], then
s = (1 + δ)i+2O is definitely larger than s∗ = (1 + δ)O.
Hence, Ellipsoid finds a point of Ls in the time limit
given. But we have the following inequality (we’re as-
suming without loss of generality that ε ≤ 1)

s ≤ (1 + δ)2(1 + δ)iO ≤ (1 + δ)2OPT

= (1 + 2δ + δ2)OPT

≤ (1 + 2δ + δ)OPT = (1 + ε)OPT

So the solution found by Algorithm 3.1 is a (1 + ε)-
approximation.

23rd Canadian Conference on Computational Geometry, 2011

Algorithm 1 TopolMax

1: Calculate O using the formula max{(|pi − pj |2 −
1)/2 | {i, j} ∈ E}.

2: Let δ = ε/3. Divide the interval [O, 2(m − 1)O]
into O (log m/ log(1 + ε)) intervals of the form [(1+
δ)iO, (1+δ)i+1O]. Sort the interval endpoints in an
increasing order.

3: for each interval endpoint like a do
4: Run the Ellipsoid method on La using the ini-

tial bounding sphere of radius
√

ma around the
origin. Run this method until it finds an an-
swer or the upper-bound on the execution time
we found earlier passes.

5: If the Ellipsoid method finds a solution point,
then stop the algorithm and return that solution.

6: end for
7: If no solution is found, return the solution found

from our previous O (m)-approximation algorithm.

3.2 TopolSum

The same method used in the previous section can be
slightly modified to work for TopolSum. One can again
find similar bounds on the volume of the convex body
and again show that the Ellipsoid method works in
polynomial time.

4 Concluding Remarks

In this paper we showed that FPTAS exists once the
target UDG is known, i.e. adjacent vertices are speci-
fied. Therefore the hardness of ConMax, ConSum and
similar movement problems lie in finding the topology of
the target UDG. We know some good heuristic ways of
guessing the target topology but have little theoretical
justification for their behavior.

Considering other types of properties such as obtain-
ing an independent set of a given size or considering a
bigger class of graphs like disc graphs are good research
directions to follow. Directly related to our work one
can narrow the hardness and approximability gap by
improving one or both. We conjecture that both Con-
Max and ConSum are approximable within constant
factors.

References

[1] E. Demaine, M. Hajiaghayi, H. Mahini, S. Oveisgharan,
A. Sayedi, and M. Zadimoghaddam. Minimizing move-
ment, In Proceedings of the 18th Annual ACM-SIAM
Symposium on Discrete Algorithms, 2007.

[2] E. Demaine, M. Hajiaghayi, H. Mahini, S. Oveisgha-
ran, A. Sayedi, and M. Zadimoghaddam. Minimizing
Movement, ACM Transactions on Algorithms, volume
5, number 3, July 2009, Article 30.

[3] E.Demaine, M.Hajiaghayi, D.Marx, Minimizing Move-
ment: Fixed-Parameter Tractability, In Proceedings of
the 17th Annual European Symposium on Algorithms,
2009.

[4] MA.Fazli, Movement Minimization in Euclidean Plane,
BSc Thesis, Sharif University of Technology, 2009.

[5] N.Ahmadipour, Movement Minimization for Network
Design in Geometric Spaces, BSc Thesis, Sharif Uni-
versity of Technology, 2010

[6] L.G. Valiant, University considerations in VLSI cir-
cuits, IEEE Trans. Computers 30 (1981) 135-140.

[7] M.R. Garey, D.S. Johnson and R.E. Tarjan, The Planar
Hamiltonian Problems is NP-complete, SIAM Journal
on Computing, Vol. 5(1976), pp 704-714.

[8] A. Itai, C.H. Papadimitriou and J.L.Szwarcfiter, Hamil-
ton paths in grid graphs, SIAM Journale of Computing.
11 (1982) 676-686.

[9] M.Mahdian, Y.Ye and J.Zhang, Approximation algo-
rithms for metric facility location problems, SIAM Jour-
nal on Computing, 2006, p411-432.

