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Abstract—Edit distance is one of the most fundamental problems in combinatorial optimization to measure the similarity between

strings. Ulam distance is a special case of edit distance where no character is allowed to appear more than once in a string. Recent

developments have been very fruitful for obtaining fast and parallel algorithms for both edit distance and Ulam distance. In this work, we

present an almost optimal MPC (massively parallel computation) algorithm for Ulam distance and improve MPC algorithms for edit

distance. Our algorithm for Ulam distance is almost optimal in the sense that (1) the approximation factor of our algorithm is 1þ �,

(2) the round complexity of our algorithm is constant, (3) the total memory of our algorithm is almost linear ( eO�ðnÞ), and (4) the overall

running time of our algorithm is almost linear which is the best known for Ulam distance. We also improve the work of Hajiaghayi et al.

for edit distance in terms of total memory. The best previously known MPC algorithm for edit distance requires eOðn2xÞmachines when

the memory of each machine is bounded by eOðn1�xÞ. In this work, we improve the number of machines to eOðnð9=5ÞxÞ while keeping the

memory limit intact. Moreover, the round complexity of our algorithm is constant and the total running time of our algorithm is truly

subquadratic. However, our improvement comes at the expense of a constant factor in the approximation guarantee of the algorithm.

This improvement is inspired by the recent techniques of Boroujeni et al. and Chakraborty et al. for obtaining truly subquadratic time

algorithms for edit distance.

Index Terms—MapReduce, parallel algorithms, approximation algorithms, ulam distance, edit distance

Ç

1 INTRODUCTION

STRING similarity measures are among the most funda-
mental problems in computer science. The edit distance

(a.k.a Levenshtein distance) is the most notable example of it.
This problem has lots of applications in several fields such
as computational biology, natural language processing, and
information theory. In theoretical computer science, too, the
problem has been very central and fundamental; the prob-
lem of computing the edit distance is a textbook example
for dynamic programming.

In edit distance, we are given two strings s and s and we
wish to transform s into s using the smallest number of edit
operations. In each operation, we are allowed to (i) insert a
character at a specific position, (ii) remove a character, or
(iii) modify a character. For simplicity, we assume that all
these edit operations incur equal costs. For two strings s
and s, jsj ¼ jsj ¼ n, a classic dynamic program finds the edit
distance between them in time Oðn2Þ. The idea is to define
auxiliary variables di;j’s which denote the edit distance

between the first i characters of s and the first j characters of
s. Next, we iteratively determine the values of the auxiliary
variables based on the following formula.

di;j ¼ di�1;j�1 if s½i� ¼ s½j�;
1þminfdi�1;j�1; di;j�1; di�1;jg if s½i� 6¼ s½j�:

�

Although naı̈ve, the above algorithm is almost the best we
can do from a theoretical perspective. Since the late 60’s,
several studies were focused on improving the quadratic
running time of the problem; however, thus far, the best-
known algorithm runs in time Oðn2=log 2nÞ [2]. The short-
coming of these studies is partly addressed by the work of
Backurs and Indyk [3] (STOC’15) wherein the authors show
a truly subquadratic time algorithm is impossible to achieve
unless a widely believed conjecture (SETH1) fails.

Unfortunately, the quadratic dependency of the running
time on the size of the input makes it impossible to use such
algorithms for large inputs in practice. For example, a human
genome consists of almost three billion base pairs that need to
be incorporated in similarity measurements. Therefore, the
need to compute/approximate these measures in better than
quadratic time has led to several algorithmic breakthroughs.
Near linear time solutions have been studied in a series of
works [4], [5], [6], [7], [8], [9], [10] culminating in polylogarith-
mic approximation. Recently, a quantum algorithm is given
for edit distance that approximates the solution within a con-
stant factor in truly subquadratic time by exploiting triangle
inequality [11]. Subsequent work discovers a novel classic
replacement for the quantum techniques and obtains a truly

� Mahdi Boroujeni is with the Department of Computer Engineering, Sharif
University of Technology, Tehran 79417-76655, Iran. E-mail: safarnejad@ce.
sharif.edu.

� Mohammad Ghodsi is with the Department of Computer Engineering,
Sharif University of Technology, Tehran 79417-76655, Iran and also with
the School of Computer Science, Institute for Research in Fundamental Sci-
ences, Tehran 19538-33511, Iran. E-mail: ghodsi@sharif.edu.

� Saeed Seddighin is with Toyota Technological Institute at Chicago, Chicago,
IL 60637USA. E-mail: saeedreza.seddighin@ttic.edu.

Manuscript received 22 Aug. 2020; revised 1 Apr. 2021; accepted 5 Apr. 2021.
Date of publication 29 Apr. 2021; date of current version 24 May 2021.
(Corresponding author: Mahdi Boroujeni.)
Recommended for acceptance by J. Zola.
Digital Object Identifier no. 10.1109/TPDS.2021.3076534

1. The strong exponential time hypothesis states that no algorithm can
solve the boolean satisfiability (CNF-SAT) problem in time Oð2nð1��Þ).
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subquadratic time algorithm within a constant factor for clas-
sic computers [12]. Subsequent works improve the running
time of the algorithm. Kouckỳ and Saks [13] and Brakensiek
and Rubinstein [14] independently present near-linear time
constant-factor approximation algorithms for edit distance
where the input strings are far from each other. Finally,
Andoni and Nosatzki [15] provide a similar near-linear time
algorithm which does not impose any condition on input
strings. Note that the approximation factors of these algo-
rithms are exponentially or doubly exponentially large con-
stants. The best algorithmwithin a factor of 3þ � is presented
by Goldenberg, Rubinstein, and Saha [16] with a running
time of eOðn1:6þoð1ÞÞ.

Ulam distance is a special case of edit distance wherein
the input strings s and s have no repetitive characters.2 This
additional restriction to the input makes the problem rela-
tively easier to solve as Ulam distance admits an almost lin-
ear time solution. Notice that, verifying whether s and s are
equal or not requires VðnÞ operations and thus there is no
hope to solve or even approximate the solution in sublinear
time. However, for the large solution regime, a constant
approximate solution can be found in time eO�ð ffiffiffi

n
p þ n=dÞ

where d is the distance of the two input strings [17]. This
was later improved to a 1þ � approximation algorithm but
for a more relaxed notion of distance wherein character sub-
stitution is not allowed [17], [18], [19]. The algorithm of
Naumovitz et al. [17] obtains a 2þ � approximate solution
for the more conventional formulation of Ulam distance.

Another line of attack is to design efficient algorithms for
string similarity measures is parallel computing [11], [20].
Motivated by modern fast, efficient, easy-to-use massively
parallel distributed computing platforms such as MapRe-
duce, Hadoop, and Spark [21], [22], [23], the massively par-
allel computation (MPC) model [24], [25], [26], [27] has been
proposed and extensively studied to understand the power
and limitations of these parallel computing platforms.

In contrast to the PRAMmodel where anVðlognÞ factor in
the round complexity is usually inevitable, MPC allows for
sublogarithmic round complexity [24], [28], [29]. In the MPC
model, each machine has unlimited access to its memory;
however, two machines can only interact in between two
rounds. Thus, a central parameter in this setting is the round
complexity of the algorithm since network communication is

the typical main bottleneck in practice. The ultimate goal is
developing constant-round algorithms, which are highly
desirable in practice.

The MPC Model. We assume throughout this paper that
the input contains two strings of length n. In the MPC
model [24], [25], [26], [27], the number of machines and the
local memory size on each machine should be relatively
smaller than the input size of the problem. Therefore, we fix
an 0 < x < 1 and consider the memory of each machine to
be eO�ðn1�xÞ and aim to minimize the number of machines
needed to run the algorithm. In the MPC model, each algo-
rithm runs in a number of rounds. In each round, every
machine makes some computation on the data assigned to
the machine. No communication between machines is
allowed during a round. Between two rounds, machines are
allowed to communicate so long as each machine receives
no more communication than its memory. Any data that is
the output of a machine must be computed locally from the
data residing on the machine, and initially, the input data is
distributed across the machines.

In this work, we present an almost optimal MPC algo-
rithm for Ulam distance and improve MPC algorithms for
edit distance. An overview of our results is shown in Table 1.
Our algorithm for Ulam distance is almost optimal in the
sense that (1) the approximation factor of our algorithm is
1þ �, (2) the round complexity of our algorithm is constant,
(3) the total memory of our algorithm is almost linear
( eO�ðnÞ), and (4) the overall running time of our algorithm is
almost linear which is the best known for Ulam distance.
Similar to edit distance and longest common subsequence
(LCS) which are considered as dual problems, Ulam dis-
tance and longest increasing subsequence (LIS) are also
seen as dual problems. LIS is equivalent to a special case of
LCS where each string can contain each character at most
once. In that sense, our result for Ulam distance comple-
ments the work of Im et al. [30], wherein a similar result is
presented for LIS. It is worth mentioning that similar to
Ulam distance, for which the running time improves for
similar strings, LIS also admits very fast (polylogarithmic
time) solutions when the two strings share a large subse-
quence [31]. However, these techniques do not improve the
time or memory complexity of the solution in the MPC
model since adaptive sampling is an inherent barrier for the
MPC model.

The best previously known MPC algorithm for edit dis-
tance requires eO�ðn2xÞ machines when the memory of each

TABLE 1
Our Results are Shown Along With Previous Massively Parallel Algorithms for Edit Distance

Our Results

Problem Reference Approximation Factor # Rounds Memory of Each Machine # Machines Total Running Time

Ulam Distance Theorem 4 1þ � 2 eO�ðn1�xÞ eO�ðnxÞ eO�ðnÞ
Edit Distance Theorem 9 3þ � 4 eO�ðn1�xÞ eO�ðnð9=5ÞxÞ eO�ðn2�minð1�x6 ;2x5 ÞÞ

Previous Work

Edit Distance [11] 1þ � OðlognÞ eO�ðn8=9Þ eO�ðn8=9Þ eO�ðn2:6Þ
Edit Distance [20] 1þ � 2 eO�ðn1�xÞ eO�ðn2xÞ eO�ðn2Þ
Our algorithm for edit distance improves the previous algorithms in terms of total memory and total running time.

2. W.l.o.g. in Ulam distance, s and s can be considered as two per-
mutations of ½n� ¼ f1; . . .; ng.
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machine is bounded by eO�ðn1�xÞ [20]. Thus, the total mem-
ory of their algorithm is eO�ðn1þxÞ. Indeed, the main question
which is left unanswered is how best can one approximate
edit distance in theMPCmodel with near-linear memory? In
this work, we take a step forward toward the answer by
improving the total memory of the algorithm to eO�ðn1þð4=5ÞxÞ.
Moreover, the round complexity of our algorithm is constant
and the total running time of our algorithm is truly subqua-
dratic. However, our improvements come at the expense of a
constant factor in the approximation guarantee of the algo-
rithm. This improvement is inspired by the recent techniques
of Boroujeni et al. [11] andChakrabortyet al. [12] for obtaining
truly subquadratic time algorithms for edit distance. More-
over, using specific parameters and eO�ðn5=17Þ machines, the
total running time of our algorithm isOðn1:883Þ and the paral-
lel running time of our algorithm isOðn1:353Þ.

2 PRELIMINARIES

In this work, we consider two problems, namely edit dis-
tance and Ulam distance. The input to both problems con-
sists of two strings s and s both of length n. Let us begin by
formally defining the edit distance of two strings s and s.

edit distance
input: Two strings s and s, both of size n.
solution: The smallest number of operations that we need
to perform on s to transform it into s. We are allowed to
(i) add a character at some position, (ii) remove a charac-
ter, and (iii) change a character. All these operations
come at a cost of 1.

For instance, for s ¼ elephant and s ¼ relevant, we can
transform s into s by performing three operations

elephant ¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼)insert 0r 0 at position0
relephant

¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼)replace 0p 0 with 0v 0 atposition4
relevhant

¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼)delete 0h 0 atposition5
relevant:

Therefore, edð00elephant00; 00relevant00Þ is at most 3. With more
inspection, it can be shown that here the edit distance is
equal to 3. The other measure that we are interested in is the
Ulam distance. Ulam distance is a special case of edit dis-
tance wherein each character appears at most once in each
string. We denote the edit distance between s and s by
edðs; sÞ, and their Ulam distance by ulamðs; sÞ.

We consider the MPC setting in which we are provided
with a certain number of machines each having a memory
of at most eO�ðn1�xÞ. In each round, every machine is fed
with a piece of information that fits within its memory and
sequentially executes a stream of operations on the input.
At the end of each round, every machine outputs some
information whose length is bounded by eO�ðn1�xÞ. The out-
puts then are given as input to the machines at the begin-
ning of the next round. We are interested in massively
parallel algorithms that run in a constant number of rounds.

In our algorithms, we divide the strings into pieces of
size B ¼ n1�y and refer to them as blocks. We denote each

block i of s by s½‘i; ri� (thus, ri ¼ ‘i þ B � 1). For the sake of
analysis, we sometimes fix an optimal solution opt and
denote by s½ai;bi� the substring of s that corresponds to
block s½‘i; ri� according to opt. Blocks of s and their corre-
sponding blocks in s are shown in Fig. 1. We often denote
the string positions by g; k; p; and q. For instance, s½g; k�
denotes the substring of s starting from position g and end-
ing at position k. Also, to simplify the analysis, we make use
of two notations eO and eO� where both suppress polyðlognÞ
factors and the latter also hides polyð1=�Þ terms.

3 OUR RESULTS

In this section, we briefly describe our massively parallel
algorithms for Ulam distance and edit distance. The details
of our algorithms are presented in Sections 4 and 5.

3.1 Ulam Distance

Here, we briefly present our massively parallel algorithm
for Ulam distance using eO�ðnxÞmachines, each with a mem-
ory of eO�ðn1�xÞ. Recall that, the eO� notation suppresses
polyðlognÞ and polyð1=�Þ terms. The details of our algorithm
are presented in Section 4. Our algorithm approximates
Ulam distance within a factor of 1þ � for an arbitrarily
small constant � > 0 with high probability. The total run-
ning time3 of our algorithm is eO�ðnÞ. Moreover, our algo-
rithm runs in two MPC rounds.

In the sequential setting, a trivial VðnÞ lower bound holds
for the running time of approximating Ulam distance within
a 1þ � factor. However, for the high distance regime, the run-
ning time can be improved to eO�ðn=dþ

ffiffiffi
n
p Þ if character sub-

stitution is not allowed [17]. However, even when the
distance is large, no 1þ � approximation algorithm is known
for Ulamdistance if character substitution is allowed.

Recall that, Ulam distance is a special case of edit dis-
tance where the input strings s and s have no repetitive
characters. Moreover, recall that for simplicity, we assume
both input strings have length n. Recall that, we break s into
blocks of size B ¼ n1�y. In our algorithm for Ulam distance,
we set y ¼ x; hence, each block fits into the memory of one
machine. We assume for simplicity that B is an integer.

To better understand our algorithm, we first illustrate how
a block of s is mapped to a substring of s. Note that, if for each
block of s we know where it transforms into in opt, we can
break the problem into nx subproblems and solve Ulam dis-
tance for each of them individually. Since such information is
not present, we form a set of candidate substrings on s for
every block of s and compute the Ulam distances between
each block of s and its corresponding candidate substrings.
The construction in our algorithm ensures that each block

Fig. 1. The partitioning of s into ny blocks of size B ¼ n1�y and the trans-
formation of the blocks into their matches via opt is shown in this figure.
Note that matched substrings span s, ‘1 ¼ a1 ¼ 1 and rn=B ¼ bn=B ¼ n.

3. summing the running time of all machines
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s½‘i; ri� has a corresponding candidate substring s½g; k� which
is relatively close to s½ai;bi�. Recall that, s½‘i; ri� transforms
into s½ai;bi� in opt. The construction of the candidate sub-
strings and computing the Ulam distance between each block
and its candidate substrings are done in the first round of our
algorithm. In the second round, we compute an approxi-
mately optimal transformation of s into s using a dynamic
program on the information gathered in the first round.

In the following, we briefly formalize the ideasmentioned
above. Without loss of generality, we assume that substrings
s½ai;bi� partition s, i.e., each character of s belongs to exactly
one s½ai;bi�. Recall that, 1þ � is the desired approximation
factor of our algorithm where � > 0 is an arbitrarily small
constant number. We fix another small number �0 ¼ �=2 for
the sake of analysis. Let ui ¼ ulamðs½‘i; ri�; s½ai;bi�Þ be the
Ulam distance between the i’th block of s and its correspond-
ing substring of s in opt. We call a substring s½a0i;b0i� an
approximately optimal candidate substring for a block
s½‘i; ri� if both of the following conditions hold:

ai � a0i � ai þ �0ui (1)

bi � �0ui � b0i � bi: (2)

Note that using approximately optimal candidate sub-
strings instead of the optimal ones imposes an additive
error of at most 2�0ui for each block which sum up to at
most a total additive error of 2�0 � ulamðs; sÞ. For a small
enough �0, this total additive error is in the range of the
desired approximation factor. In our algorithm, we con-
struct an approximately optimal candidate substring in the
first phase with high probability unless ui is too large and
the number of common characters of s½‘i; ri� and s½ai;bi� is
too small (see Lemma 3). Note that, in such cases, one can
remove all characters of s½‘i; ri� and add all characters of
s½ai;bi� instead, without losing more than a 1þOð�0Þ multi-
plicative factor. This claim is proven in Theorem 4.

In what follows, we explore some features of the approxi-
mately optimal candidate substrings. In our algorithm, if ui

is relatively small, we solve a local version of Ulam distance
which finds a substring s½g; k� and guarantees that its end-
points are relatively close to the endpoints of s½ai;bi�. Next,
we construct several candidate substrings with starting
points near g and ending points near k. We prove that at
least one of these candidate substrings satisfies both Condi-
tions 1 and 2. This case is illustrated in Fig. 2

In cases that ui is relatively large and ci, the number of
unchanged characters of transforming s½‘i; ri� into s½ai;bi� in
opt, is more than �B=4, we sample each character of s½‘i; ri�

with an independent probability of u ¼ ð8=�0BÞlogn and put
them in a hitting set I. We show that at least one of the charac-
ters of I remain unchanged in the transformation of s½‘i; ri� into
s½ai;bi� in opt with high probability. For such an unchanged
character, we make a substring s½g; k� based on the position of
the unchanged characters and show that its endpoints are near
the endpoints of s½ai;bi�. Note that since s contains distinct
characters, it is easy to findwhere an unchanged character of s
maps in s. We prove this claim in Lemma 2. Afterward, we
construct several candidate substrings with starting points
near g’s and ending points near k’s.We prove in Lemma 3 that
at least one of these candidate substrings satisfies both Condi-
tions 1 and 2with high probability. This case is shown in Fig. 3.

Recall that, the starting point of an approximately opti-
mal candidate substring a0i is allowed to be up to �0ui charac-
ters away from ai. Hence, we define a gap Gi ¼ �0ui and only
inspect the starting points and ending points with indices
divisible by Gi. We assume for simplicity that Gi is an inte-
ger. We show that the expected total number of candidate
substrings for a block (for both cases) is at most

h
1þ log 1þ�0n � ð1þ B � ð8=�0BÞlognÞð1=�0Þ

i
ð1=�0Þ ¼ eO�ð1Þ:

Therefore, we assign the computational task correspond-
ing to each block of s, including the computation of the
Ulam distance between the block and its corresponding can-
didate substrings, to one machine. Note that since s does not
have any repetitive characters, the only information needed
from s to be fed to the machine is the location of each char-
acters of s½‘i; ri� in s if exists, which are eO�ðn1�xÞ many loca-
tions. A more formal description of the first round of our
algorithm is given in Algorithm 1. Finally, in the second
round of our algorithm, we run a dynamic program to find
a 1þ � approximation solution based on the candidate sub-
strings we construct in the first round of the algorithm. This
phase is shown in Algorithm 2.

Theorem 4 [restated]. For an arbitrarily small constant
� > 0, there exists a massively parallel algorithm witheO�ðnxÞ machines for arbitrary 0 < x < 1=2, each with a
memory of eO�ðn1�xÞ that approximates the Ulam distance of
two strings of length nwithin a factor of 1þ � in two rounds
with high probability. Moreover, the total computation of
this algorithm is eO�ðnÞ.}

3.2 Edit Distance

Note that in the classic setting, edit distance can be solved
within linear memory. However, existing massively parallel

Fig. 2. If the Ulam distance between s½‘i; ri� and s½ai; bi� is small, we
solve local Ulam distance which gives us the best match of s½‘i; ri� in s.
Such a substring is shown as s½g; k� in this figure. We prove that s½g; k�
and s½ai;bi� intersect, which narrows down our search for s½ai;bi�. In this
figure, common characters are connected via dotted lines.

Fig. 3. If the Ulam distance between s½‘i; ri� and s½ai; bi� is large but the
number of unchanged characters is not small, we try to find a common
character by randomized sampling. If character G is a common charac-
ter, we extend it to form s½g; k� which narrows down our search for
s½ai;bi� to indices near g and k.
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algorithms for edit distance such as [11] and [20] use a super-
linear amount of memory, the best of which uses eO�ðn1�xÞ
memory for each of its eO�ðn2xÞ machines. Recall that, the eO�

notation suppresses polyðlognÞ and polyð1=�Þ terms. In this
work, we improve the number of machines and thus the
aggregated memory of our algorithm. Our algorithm runs oneO�ðnð9=5ÞxÞ machines with memory eO�ðn1�xÞ. However, this
comes at the expense of a constant factor loss in the approxi-
mation. More precisely, the approximation factor of our algo-
rithm is 3þ � and its round complexity is 4. Moreover, the

total running time of our algorithm is eO�ðn2�minð1�x6 ;2x5 ÞÞ which
is truly subquadratic for any 0 < x < 1.

Our algorithm uses two different approaches for small dis-
tances and large distances. The overall structure of our algo-
rithm for small distances has similarities with the algorithm
of [20] but improves it in terms of memory usage. For large
distances, which is the hard case, we borrow some ideas from
sequential algorithms of [11] and [12] and marry them with
new techniques to run the algorithm in the parallel setting.

The very first step of our algorithm is to assume we have a
given value nd and the task is to verify whether nd is relatively
close to edðs; sÞ or it is much smaller than the actual edit dis-
tance between s and s. Previous work such as [11] has shown
that such an assumption only adds a multiplicative eO�ð1Þ
term to the analysis of our algorithm. The overall idea is to try
all values of nd ¼ ð1þ �Þi for 0 � i � log 1þ�n. In the sequen-
tial setting, we start by a small nd, and every time we fail to
find a solution with that size, we try the next value for nd. The
first time we find a solution, we are certain that it is a 1þ �
approximation of the optimal solution. In the parallel setting,
we run our algorithm for all values of nd in parallel and only
consider the smallest nd with a valid solution at the end.
Therefore, this assumptiondoes not affect the round complex-
ity of our algorithm. Last but not least, our algorithm detects
the case of edðs; sÞ ¼ 0 separately.

Let 1þ � be the desired approximation factor of our algo-
rithm for an arbitrarily small constant � > 0. For simplicity,
we use �0 ¼ �=22 in the analysis of our algorithm. Our algo-
rithm breaks the problem into ny subproblems for each
block of s. Recall that the memory of each machine iseO�ðn1�xÞ hence, eO�ðny�xÞ blocks of size B ¼ n1�y fit into the
memory of a single machine. Moreover, for a block s½‘i; ri�
of s, we call a candidate substring s½a0i;b0i� approximately
optimal if both of these conditions hold.

ai � a0i � ai þ �0nd�y, (3)

bi � �0nd�y � �0edðs½‘i; ri�; s½ai;bi�Þ � b0i � bi: (4)

We then use one of the following approaches to solve these
subproblems based on whether nd is relatively small or rela-
tively large.

3.2.1 Small Distances ðnd � n1�x=5Þ
Note that if we know which part of s corresponds to each
block of s in opt, the subproblems can be solved easily.
Instead of this out of reach information, our algorithm findseO�ðnyÞ candidate substrings of s for each block of s and
ensures that at least one of the candidate substrings of each

block is relatively close to its match in opt. The construction
of the candidate substrings is similar to that of [20]. In this
case, our algorithm consists of two rounds. In the first round,
we compute the edit distance between each block and its can-
didate substrings. In the second round, we use the informa-
tion obtained in the first round and run a dynamic program to
find an approximately optimal transformation of s into s. In
the following, we briefly describe the two rounds of our algo-
rithm in the case of small distances.

If for every block of s, we are able to find an approxi-
mately optimal candidate substring, the total additive error
caused by using these substrings instead of optimal ones
assuming edðs; sÞ � nd is at most

X
i

�0nd�y þ �0nd�y þ �0edðs½‘i; ri�; s½ai;bi�Þ � 3�0nd:

Therefore, using these substrings only incurs a multiplica-
tive 1þ 3�0 term to the approximation factor. We claim that
if the size of s½ai;bi� is not too small nor too large, our algo-
rithm certainly finds an approximately optimal candidate
substring for s½‘i; ri� in the first phase. We provide a formal
proof of this claim in Lemma 5.

On the other hand, if s½ai;bi� is too small or too large, we
can remove s½‘i; ri� and insert s½ai;bi� by imposing at most a
1þ �0 multiplicative factor to the approximation factor. We
prove this claim in Lemma 6. The construction of candidate
substrings is done as follows. Assuming nd is an upper
bound on the solution size, we conclude that j‘i � aij � nd.
We then define a gap G ¼ b�0nd�yc and consider indices in
the range of ½‘i � nd; ‘i þ nd� which are divisible by G as the
starting points of our candidate substrings. It can be easily
shown that one of these starting points meets condition 3.
This structure is shown in Fig. 4. The total number of start-
ing points for a block is therefore, OðndÞ=G ¼ Oðð1=�0ÞnyÞ.
Moreover, for each starting point, we consider at most
Oðlog 1þ�0nÞ ¼ eO�ð1Þ endpoints. The construction of end-
points is shown in Fig. 5. Each pair of a starting point and
an ending point forms a candidate substring. Hence, the
total number of candidate substrings for each block iseO�ðnyÞ � eO�ð1Þ ¼ eO�ðnyÞ. In the case of small distances, we
use y ¼ x.

Up to this point, our algorithm for the case of a small dis-
tance is similar to that of [20]. However, the algorithm
of [20] assigns each pair of block/candidate substring to a
single machine. On the contrary, since in this case, nd is
small, starting points of candidate substrings of a block are
not far from each other. Therefore, we give several candi-
date substrings of each block to a machine. This technique

Fig. 4. In our algorithm for edit distance, we form the starting points of
candidate substrings for a block s½‘i; ri� as follows. The starting points
are in the range of ½‘i � nd; ‘i þ nd�. Moreover, we consider starting points
in this interval which are divisible by G ¼ �0nd�y.
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reduces the number of machines and therefore the total
memory of our algorithm. The total number of machines in
our algorithm in this case is

nx �
eO�ðndÞ
n1�x ¼ eO�ðn2x�ð1�dÞÞ:

Recall that in the first round of our algorithm, we compute
the distances between each block and its candidate sub-
strings. To find the edit distance between a block and one of
its candidate substrings in our algorithm, we use a variant
of the algorithm of [12] on each machine which uses linear
memory, has an approximation factor of 3þ �0, and runs in
time Oðn2�1=6Þ. Therefore, the total running time of this
phase is eO�ðn2�ð1�xÞ=6Þ and the parallel running time of this
phase is eO�ðnð1�dÞþð2�1=6Þð1�xÞÞ. In the second round of our
algorithm, we find a 1þ �0 approximate solution based on
the information obtained in the first round. Moreover, the
total computation of the second round is done on a single
machine with a running time of eO�ðn2yÞ.

3.2.2 Large Distances ðnd > n1�x=5Þ
In this case, we apply the triangle inequality technique of [11],
randomized sampling technique of [11], and low degree
extension technique of [12] to avoid explicitly computing the
edit distance for all pairs of blocks and candidate substrings.
Similar to the previous case, we partition s into ny blocks of
size B ¼ n1�y. It is known that we can reduce the problem of
computing the edit distance for all pairs of blocks and candi-
date substrings into verifying whether their distance is at
most a given threshold t or much larger than t [11]. More pre-
cisely, similar to Lemma 5, we reduce the edit distance prob-
lem to finding the edit distance between smaller block/
substring pairs. Afterward, the distance between a block and
one of its substrings is found by discretizing the distancewith
several threshold t (t ¼ 0 and t ¼ ð1þ �0Þj for 0 � j � log �0n)
and then checking whether the distance is at most t or much
larger than t. Both steps impose small errors. In the following,
we assume a threshold t is fixed, and we aim to find all pairs
of (block, candidate substring)’s with an edit distance of at
most t. In the final solution, we try all values of t ¼ 0 and t ¼
ð1þ �0Þj for 0 � j � log �0n in parallel. For a given t, we define
a graph Gt by placing a node for every block and candidate
substrings of all blocks and connect two nodes if their edit dis-
tance is at most t. Note thatGt is not explicitly constructed at
first, and we try to find most of its edges with limited resour-
ces. We sometimes use the phrase the edit distance between
two nodes whichmeans the edit distance between their corre-
sponding strings. Let 0 < a < 1 be a parameter we fix later.

We call a node high degree (or dense) if it is connected tomore
than na nodes and call it low degree (or sparse) otherwise.

Our algorithm for the case of large distances consists of
four rounds. In the first round, we find the neighbors of all
high degree nodes with high probability. If most of the
blocks are high degree, then our job is done. In the second
and third rounds, we solve the problem for cases where a
significant number of low degree blocks are present. In the
fourth round, we combine the solutions of individual blocks
into a general solution using a dynamic program. In the fol-
lowing, we briefly explore these ideas.

In the first round, we sample each node with an indepen-
dent probability of eO�ð1=naÞ and call them representatives.
We then compute the edit distances between each represen-
tative and all other nodes. We show that each high degree
node of Gt has at least one representative as its neighbor
with high probability and therefore, we can approximately
find all of its neighbors using the triangle inequality. More
precisely, let z be a representative, NtðzÞ be the set of all
nodes with a distance of at most t to z, and N2tðzÞ be the set
of all nodes with a distance of at most 2t to z. We put an
edge for each pair of NtðzÞ �N2tðzÞ in our graph. For a
node v with a representative z as one of its neighbors, v 2
NtðzÞ and NtðvÞ � N2tðzÞ hold. Therefore, for a node v
which has a representative neighbor, the edges between v
and all of its neighbors are added. Moreover, if a node v is
high degree, we show it has at least one representative as its
neighbors with high probability. Furthermore, using trian-
gle inequality, we show that each added edge has a distance
of at most 3t. In Fig. 6 the Venn diagram of the these sets
are shown and in Lemma 7 a formal proof is presented.

Therefore, at the end of the first round, all neighbors of
high degree nodes for all thresholds are found. However,
some false positive neighbors may also be present where
each of them has a distance of at most 3t.

The second and third rounds consider low degree nodes.
In the second round, we sample some low degree blocks
and find their distance to their candidate substrings. In the
third round, we extend some pairs of low degree blocks and
candidate substring with distances less than t to a number
of adjacent blocks. In the following, we briefly describe the
second and third rounds.

The neighbors of low degree nodes cannot be found simi-
lar to the high degree nodes. However, low degree nodes
have other useful features:

� We partition s into several regions or larger blocks. If
in the optimal solution opt, only a few low degree
blocks correspond to a region, we can ignore low

Fig. 5. We form the ending points of candidate substrings for a block
s½‘i; ri� and a starting point g around k ¼ g þ B as k	 ð1þ �0Þj. Note that
we only construct candidate with a length less than ð1=�0ÞB. Moreover,
we can safely neglect ending points beyond kþ nd.

Fig. 6. The graph Gt is shown in this figure. The set of representatives R
is shown with the set of its neighbors with distance t and 2t. We show
that high degree nodes are in NtðRÞ with high probability. Other low
degree nodes may correspond to blocks or substrings.
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degree blocks of this region in our approximate solu-
tion since we are not going to lose much. Hence, we
can only focus on regions with too many low degree
blocks in opt.

� For such regions, we suppose we know a block
s½‘i; ri� that transforms into s½g; k� in opt. Such an
assumption is valid since there exist too many low
degree blocks and we can hit at least one of them
using random sampling. We can also assume we
approximately know the edit distance between them
by trying all values for t. Moreover, since s½‘i; ri� is
low degree, we can find s½g; k� by trying all candidate
substrings of s½‘i; ri� and be sure that a small number
of them can be (approximately) s½g; k�. Otherwise,
s½‘i; ri� is high degree.

� If we know a block s½‘i; ri� transforms into s½g; k� in
opt, we can approximately guess that where the
nearby blocks of s½‘i; ri� which are in the same region
also transform into and create a pair of block/
substring.

This technique is called the extension of a low degree block and
it is shown in Fig. 7.More precisely, Supposewe knowa block
s½‘i; ri� transforms into s½g; k� in opt. We then consider larger
blocks with size n1�y0 , assuming y0 < y. Let s½‘0i; r0i� be a block
of size n1�y0 containing s½‘i; ri�. We observe that s½‘0i; r0i�
approximately transforms into s½g � ð‘i � ‘0iÞ; kþ ðr0i � riÞ� in
opt. Moreover, we show that any block of size n1�y such as
s½‘j; rj�which is also contained in s½‘0i; r0i� approximately trans-
forms into s½g � ð‘i � ‘jÞ; kþ ðrj � riÞ� in opt. To use such a
block, we should have t 
 edðs½‘i; ri�; s½g; k�Þ. To this end, we
sample each low degree block with an independent probabil-
ity of eO�ð1=nðy�y0Þ�ð1�dÞÞ and put them in a set L. We show that
for each of the larger blocks which contain sufficiently many
low degree normal sized blocks, L hits at least one of the nor-
mal sized blocks with the right t with high probability. This
claim is shown in Lemma 8. Note that the expected size of L is
ny � eO�ð1=nðy�y0Þ�ð1�dÞÞ ¼ eO�ðny0þð1�dÞÞ. For each block in L, we
find its distance to all eO�ðnyÞ of its candidate substrings in the
second round. The expected number of machines in the sec-
ond round is equal to

jLj �Oðn
dÞ

n1�x ¼ eO�ðnxþy0 Þ:

The expected total running time of the second round is
equal to

jLj � eO�ðnyÞ � eO�ðn2ð1�yÞÞ ¼ eO�ðn2�ðy�y0ÞÞ:
Moreover, the parallel running time of this phase is equal to

eO�ðn2�x�yÞ:

In the third round, we extend low degree blocks, for each
of their candidate substrings with a distance of no more than
t. Note that low degree nodes have at most na such candidate
substrings. For each of such pairs, we compute the edit dis-
tance of ny�y0 pair of strings of size eO�ðn1�yÞ in the third
round. Therefore, the expected number of machines in the
third round is atmost

jLj � na � nx�y0 ¼ eO�ðnxþð1�dÞþaÞ:
The expected total running time of the third round is equal to

jLj � na � ny�y0 � eO�ðn2ð1�yÞÞ ¼ eO�ðn2�yþð1�dÞþaÞ:
Moreover, the parallel running time of this phase of our
algorithm is equal to

eO�ðn2�x�yÞ:

In the fourth round of our algorithm, we use a DP algo-
rithm (similar to the second round of small distances) to find
a total solution. The final solution has an approximation factor
of at most 3þ �. In Section 5.3, we show by setting adequate
parameters, the expected number of machines of our algo-
rithm is eO�ðnð9=5ÞxÞ, each having a memory of size Oðn1�xÞ.
Moreover, the expected total time complexity of our algo-
rithm is eO�ðn2�2x=5Þ.

By combining the two approaches for small distances
and large distances, we achieve the desired massively paral-
lel algorithm for edit distance.

Theorem 9 [restated]. Let 0 � x � 5=17 and � > 0 be two
arbitrary numbers. There exists a massively parallel algo-
rithm that approximates the edit distance between two
strings of length n within a factor of 3þ � in four rounds.

The total computation of this algorithm is eO�ðn2�minð1�x6 ;2x5 ÞÞ,
and it uses eO�ðnð9=5ÞxÞ machines each with a memory ofeO�ðn1�xÞ. Moreover, the parallel running time of our algo-

rithm is eO�ðn2�minð5þ49x30 ;11x5 ÞÞ.

4 ULAM DISTANCE

The outline of our algorithm is presented in Section 3. In this
section, we explain two phases of our algorithm in more
details. Recall that in our algorithm, we divide string s into
blocks of size B ¼ n1�y where y ¼ x in this Section. In the first
phase, each machine receives a block of s and constructs a set
of candidate substrings in s for the given block. Afterward,
each machine computes the Ulam distance between their
given block and the constructed candidate substrings. In the
second phase of our algorithm, a single machine receives all of
the information generated in the first phase and uses it to com-
pute an approximately optimal solution via a dynamic pro-
gram. In this section, we show that the approximation factor of
our algorithm is 1þ � with high probability. In the analysis of
our algorithm, we use a relatively smaller error threshold of
�0 ¼ �=2.

4.1 Phase 1

In the first phase of our algorithm, we construct the candi-
date substrings for each block of s and compute the Ulam

Fig. 7. If we know a block s½‘i; ri� and its corresponding substring s½ai;bi�
in opt, we can extend the substring. This extension gives us a candidate
substring for each block s½‘j; rj� if it is contained in a larger block s½‘0i; r0i�.
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distance between each block and its candidate substrings.
The construction of the candidate substrings is done using
two approaches. The first approach is suitable when ui ¼
ulamðs½li; ri�; s½ai;bi�Þ is small and the second one is suitable
when ui is large.

If ui < B=2, we use the solution of the local version of
Ulam distance (lulam) between s½li; ri� and the whole string
of s to find an estimated location of ai and bi. The local
Ulam distance between s½li; ri� and s is defined as the mini-
mum Ulam distance between s½li; ri� and any substring of s.
A sequential algorithm for local Ulam distance is presented
in Appendix A, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2021.3076534. Let s½g; k� be such a substring
of s with the minimum Ulam distance to s½li; ri�. We claim
that jai � gj � 2ui and jbi � kj � 2ui. Recall that we define a
gap size Gi ¼ �0ui and consider substrings where their start-
ing points and ending points indices are divisible by Gi. The
total additive error incurred by considering the gap for
starting and ending points is at most

P
i 2Gi � 2�0 � ulam

ðs½li; ri�; s½ai;bi�Þ, which is negligible. Furthermore, since
jai � gj � 2ui and jbi � kj � 2ui, the total number of starting
points and ending points we consider are at most ð4ui þ
1Þ=Gi ¼ Oð1=�0Þ. This makes a total of Oð1=�02Þ candidate
substrings for each block.

The next approach constructs candidate substrings for a
block when ui � B=2. Let ci be the number of unchanged
characters in an optimal transformation of s½li; ri� into
s½ai;bi�. If ci is at most �0B=4, we ignore the transformation,
remove all characters of s½li; ri� and insert all characters of
s½ai;bi�. This imposes an additive error of at most 2ci �
�0B=2 � �0ui, which is also negligible. Hence, in the follow-
ing, we assume that ci � �0B=4.

In this case, we use a randomized sampling method and
choose each character of s½li; ri� with an independent proba-
bility of u ¼ ð8=�0BÞlogn. This hitting set I has at least one of
the ci unchanged characters of the given block with a proba-
bility of at least

1� ð1� uÞci ¼ 1� ð1� ðð8=�0BÞlognÞ�0B=4
> 1� e�2logn ¼ 1� 1=n2:

Using the union bound, the overall probability of success
for all machines is at least 1� nx=n2 > 1� 1=n. The idea is
to use the location of an unchanged character for locating ai

and bi as follows. Let s½p� be an unchanged character which
is mapped to s½q�. Moreover, let g ¼ q � ðp� ‘iÞ and k ¼
q þ ðri � pÞ. We show that jai � gj � ui and jbi � kj � ui.
Similar to before, we only use the starting points and ending
points whose indices are divisible by Gi. The total additive
error incurred by considering the gap for starting and end-
ing points is at most

P
i 2Gi ¼ 2�0 � ulamðs½li; ri�; s½ai;bi�Þ

likewise. Furthermore, the expected total number of starting
points and ending points we investigate are each at most
OðuBÞ � ð2ui þ 1Þ=Gi ¼ eOð1=�02Þ. This makes an expected
total of Oð1=�04Þ candidate substrings for each block.

Since we do not know ui in advance, we try all values of
ui ¼ ð1þ �0Þj and ui ¼ 0 as an estimated value. This imposes
an extra 1=�0 term in the time complexity. However, it does
not affect the approximation factor of our algorithm. For a

block s½‘i; ri�, we feed the entire block and the locations of
its characters in s to a machine. Since s has no repetitive
characters, the input of each machine has size OðBÞ ¼
Oðn1�xÞ. In each machine then, we try all ui ¼ ð1þ �0Þj for
0 � j < log 1þ�0n1�x. We also deal with ui ¼ 0 separately as
a special case. For a fixed ui, we identify a set of at mosteOð1=�04Þ candidate substrings as described above. Our algo-
rithm then computes the Ulam distance between s½‘i; ri� and
all of the candidate substrings and outputs a set of at mosteOð1=�05Þ tuples indicating the candidate substrings and their
corresponding Ulam distances. Therefore, for each block,
the running time of our algorithm is eOðB=�05Þ, and the
size of the output is eOð1=�05Þ. Hence, the total running
time of the first phase is nx � eOðB=�05Þ ¼ eOðn=�05Þ and the
total output generated for the second phase is eOðnx=�05Þ.
A more detailed description of our algorithm is given in
Algorithm 1.

Algorithm 1. Computing the Candidate Substrings for a
Block s½‘i; ri�
Data: ‘i; ri; s½‘i; ri�; s.
Result: candidate substrings along with their Ulam distances

from s½‘i; ri�
1: ðg; k; d�Þ  lulamðs½‘i; ri�; sÞ;
2: if d� ¼ 0 then
3: Output h½‘i; ri�; ½g; k�; 0i;
4: for ui ¼ ð1þ �0Þj where j 2 ½0; log 1þ�0n� do
5: ûi ¼ ð1þ �0Þui;
6: Gi  maxðb�0uic; 1Þ;
7: if ui < B=2 then
8: for sp ¼ maxð1; g � 2ûiÞ to minðg þ 2ûi; nÞ in steps of

sp spþ Gi do
9: for ep ¼ maxð1; k� 2ûiÞ to minðkþ 2ûi; nÞ in steps of

ep epþ Gi do
10: Output h½‘i; ri�; ½sp; ep�; ulamðs½‘i; ri�; s½sp; ep�Þi;
11: else
12: sample a hitting set I from ½‘i; ri�with a probability of

ð8=�0BÞlogn for each element;
13: for p 2 I do
14: q the location of s½p� in s;
15: g  q � ðp� ‘iÞ;
16: k q þ ðri � pÞ;
17: for sp ¼ maxð1; g � ûiÞ tominðg þ ûi; nÞ in steps of

sp spþ Gi do
18: for ep ¼ maxð1; k� ûi; spÞ tominðkþ ûi; nÞ in steps

of ep epþ Gi do
19: Output h½‘i; ri�; ½sp; ep�; ulamðs½‘i; ri�; s½sp; ep�Þi;

In the Lemmas 1 and 2, we show some properties for
small and large ui’s, respectively. Then, in Lemma 3, we use
the two previous lemmas to show an important property of
Algorithm 1. The proofs of Lemmas 1, 2, and 3 are presented
in Appendix B, available in the online supplemental mate-
rial. In Section 4.2, we use this property to prove the approx-
imation factor of our algorithm.

Lemma 1. Let s½‘i; ri� be a block of s and s½ai;bi� be its correspond-
ing substring in an optimal transformation of s into s. Moreover,
let ui be the Ulam distance between s½‘i; ri� and s½ai;bi�. If ui <
B=2 and s½g; k� be the solution of local Ulam distance between
s½‘i; ri� and s, then two substrings s½g; k� and s½ai;bi� intersect.
In addition, jai � gj � 2ui and jbi � kj � 2ui hold.
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Lemma 2. Let s½‘i; ri� be a block of s and s½ai;bi� be its corre-
sponding substring in an optimal transformation of s into s.
Moreover, let ui be the Ulam distance between s½‘i; ri� and
s½ai;bi�. If ui � B=2 and at least �0B=4 unchanged character
exist in the optimal transformation of s½‘i; ri� into s½ai;bi� and
s½p� ¼ s½q� be one of these unchanged characters, then jai �
gj � ui and jbi � kj � ui hold where g ¼ q � ðp� ‘iÞ and k ¼
q þ ðri � pÞ.

Lemma 3. Let s½‘i; ri� be a block and s½ai;bi� be its correspond-
ing substring in an optimal transformation of s into s. If the
optimal transformation of s½‘i; ri� into s½ai;bi� has a size of less
than B=2 or has at least �0B=2 unchanged characters, then
Algorithm 1 outputs at least a candidate substring s½a0;b0� for
s½‘i; ri� with high probability such that

1) ai � a0i � ai þ �0ui

2) bi � �0ui � b0i � bi

4.2 Phase 2

Recall that the output of the first phase of our algorithm is a
set of eO�ðnxÞ tuples, h½‘i; ri�; ½g; k�; di, where s½‘i; ri� is the i’th
block of s and s½g; k� is a corresponding candidate substring.
Also, d is equal to the Ulam distance between s½‘i; ri� and
s½g; k�. In the second phase of our algorithm, we perform a
dynamic program to compute a transformation from s into
s based on the partial solutions gathered in the first phase.
Notice that if we assume x < 1=2, the size of the output of
the first phase, eO�ðnxÞ, is relatively small and can be fed into
the memory of a single machine. This machine is responsi-
ble for the entire computation of the second phase.

Algorithm 2. Computing an Approximate Solution for
ulamðs; sÞ Based on the Tuples

Data: T ½1�; T ½2�; . . . .
Result: an approximate value of Ulam distance between s

and s
1: m the number of tuples;
2: D an array of sizem initially containing1 in all cells;
3: for a 2 ½1;m�; T ½a� ¼ h½‘i; ri�; ½g; k�; di do
4: D½a�  maxf‘i � 1; g � 1g þ d;
5: for b 2 ½1; a� 1�; T ½b� ¼ h½‘0i; r0i�; ½g 0; k0�; d0i do
6: if r0i < ‘i and k0 < g then
7: D½a�  min

�
D½a�; D½b� þmaxf‘i � r0i � 1; g � k0 � 1g þ d

�
;

8: answer 1;
9: for a 2 ½1;m�; T ½a� ¼ h½‘i; ri�; ½g; k�; di do
10: answer min

�
answer; D½a� þmaxfn� ri; n� kg�;

11: return answer;

We assume the tuples are stored in array T and are
sorted in increasing order of ‘i where ties are broken arbi-
trarily. In our dynamic program, we create an array D with
the same length as T . Let the a’th tuple be equal to
h½‘i; ri�; ½g; k�; di. We compute D such that each D½a� approxi-
mates ulamðs½1; ri�; s½1; k�Þ. Let Pa be the set of indices of
tuples T ½b� ¼ h½‘0i; r0i�; ½g 0; k0�; e0i such that r0i < ‘i and k0 < g.
Then, the update rule ofD is as follows.

D½a� :¼ min
�
maxf‘i � 1; g � 1g þ d;

min
b2Pa
fD½b� þmaxf‘i � r0i � 1; g � k0 � 1g þ dg�:

The term dþmaxf‘i � 1; g � 1g correspond to the situation
where characters of s½1;minf‘i � 1; g � 1g� are substituted
with s½1;minf‘i � 1; g � 1g�, the remaining characters of
s½1; ‘i � 1� are removed, and the remaining characters of
s½1; g � 1� are inserted. In the other term, T ½b� is the first
tuple before T ½a� in the solution where D½b� is the estimated
value for ulamðs½1; r0i�; s½1; k0�Þ, the additional cost d corre-
sponds to the cost of transforming s½‘i; ri� into s½g; k� and the
cost maxf‘i � r0i � 1; g � k0 � 1g corresponds to substitut-
ing/removing/adding the characters between the two
tuples. This gives us an eO�ðn2xÞ time algorithm with mem-
ory eO�ðnxÞ that runs on a single machine.

In Theorem 4, we show that the combination of Algo-
rithms 1 and 2, approximates the Ulam distance of s and s
within a factor of 1þ �with high probability.

Theorem 4. For an arbitrarily small � > 0, there exists a mas-
sively parallel algorithm with eO�ðnxÞ machines for arbitrary
0 < x < 1=2, each with a memory of eO�ðn1�xÞ that approxi-
mates the Ulam distance of two strings of length n within a fac-
tor of 1þ � with high probability in two rounds. The expected
total computation of this algorithm is eO�ðnÞ.
The proof of Theorem 4 is presented in Appendix B,

available in the online supplemental material.

5 EDIT DISTANCE

The outline of our algorithm for edit distance is presented in
Section 3. In this section, we describe both cases of our algo-
rithm in more details. Recall that our algorithm has two dif-
ferent approaches for relatively small and relatively large
distances. Recall that we divide s into ny blocks of size B ¼
n1�y. We also construct a set of candidate substrings for
each block. We define �0 ¼ �=22 for the simplicity of our
analysis. We also assume that our solution is roughly equal
to nd. Recall that we define the gap size G ¼ maxfbnd�x�0c; 1g
and define the starting points of candidate substrings to be
indices no more that nd apart from ‘i and are divisible by G.

5.1 Small Distances ðnd � n1�x=5Þ
For small distances recall that we fix y ¼ x. The main task in
the first phase is to compute the edit distances between each
block and its candidate substrings. In the second phase, we
use the gathered information in the first phase to construct
our final solution. The approximation factor of our algo-
rithm, in this case, is 3þ � since we use a variant of the
approximation algorithm of [12] to find the edit distance
between any block and its candidate substrings instead of
using the naı̈ve DP algorithm.

5.1.1 Phase 1 for Small Distances

In the first phase of our algorithm for small distances, we
construct candidate substrings for each block s½‘i; ri� and
assign one block and several of its candidate substrings to
each machine. The memory of each machine is eO�ðn1�xÞ;
hence, eO�ðndÞ=n1�x machines are sufficient for each block
since we partition candidate substrings by their starting
points. Therefore, the total number of machines used in this
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phase is eO�ðn2x�ð1�dÞÞ. In the following, we explain how we
partition candidate substrings of a block.

For a fixed block and a fixed starting point, our algorithm
considers several ending points. Note that, we only consider
candidate substrings with a length of at most ð1=�0ÞB. There-
fore, the size of the feed of each machine is at most eO�ðn1�xÞ.
More precisely, a machine is responsible to compute the edit
distance between a block s½‘i; ri� and several starting points
g1; g2; . . .; gh, where h ¼ Oðn1�x=GÞ. The feed given to this
machine is s½‘i; ri� and s½g1; gh þ ð1=�0ÞB�. Afterward, we
assign a set of endpoints kj;1; kj;2; . . . ; kj;h0 , where h0 ¼
Oðlog 1þ�0 ðð1=�0ÞBÞÞ, for a starting point gj. We form kj;h’s as
g þ B 	 ð1þ �0Þa for 0 � a � log 1þ�0 ðB=�0Þ in addition to g þ
B. We then consider s½gj; kj;h�’s as candidate substrings. The
machine then computes the edit distance between the given
block (s½‘i; ri�) and the candidate substrings (s½gj; kj;h�’s) and
outputs a set of h � h0 ¼ eO�ðn1�dÞ tuples each consisting of a
block, a candidate substring, and their edit distance. The run-
ning time of each machine is then h � h0 � eO�ðnð2�1=6Þð1�xÞÞ ¼eO�ðn2�2xþð1�dÞ�ð1�xÞ=6Þ. Hence, the total running time of the
first phase is eO�ðn2x�ð1�dÞÞ � eO�ðn2�2xþð1�dÞ�ð1�xÞ=6Þ ¼eO�ðn2�ð1�xÞ=6Þ. The size of the ouput of a machine is h � h0 ¼eO�ðn1�dÞ; hence, the size of the total output produced in the
first phase is eO�ðn2x�ð1�dÞÞ � eO�ðn1�dÞ ¼ eO�ðn2xÞ. The pseudo-
code of the first phase is given in Algorithm 3.

Algorithm 3. Computing the Edit Distance Between a
Block s½‘i; ri� and its Candidate Substrings With Starting
Points g1; g2; . . .; gh

Data: ‘i; ri; g1; . . .; gh; s½‘i; ri�; s½g1; gh þ B � 1=�0�.
Result: candidate substrings with specified starting points

along with their edit distances from s½‘i; ri�
1: for j 2 ½1; h� do
2: Output h½‘i; ri�, ½gj; gj þ B�, edðs½‘i; ri�; s½gj; gj þ B�Þi;
3: for a 2 ½0; blog 1þ�0minfB=�0; ndgc� do
4: Output h½‘i; ri�, ½gj; gj þ B � bð1þ �0Þac�, edðs½‘i; ri�; s½gj;

gj þ B � bð1þ �0Þac�Þi;
5: Output h½‘i; ri�, ½gj; gj þ B þ bð1þ �0Þac�, edðs½‘i; ri�; s½gj;

gj þ B þ bð1þ �0Þac�Þi;

In Lemma 5, we prove an important feature of Algo-
rithm 3. In Section 5.1.2, we use this feature of Algorithm 3 to
prove the correctness of our algorithm for small distances.

Lemma 5. Let s½‘i; ri� be a block of s and s½ai;bi� be its corre-
sponding substring in an optimal transformation of s into s.
Moreover, assume ai þ G þ �0B < bi � ai þ B � 1=�0 holds.
Therefore, Algorithm 3 for at least one machine outputs a can-
didate substring s½a0;b0� such that both of these conditions hold:
� ai � a0i � ai þ �0nd�x,
� bi � �0nd�x � �0edðs½‘i; ri�; s½ai;bi�Þ � b0i � bi.

The proof of Lemma 5 is presented in Appendix B, avail-
able in the online supplemental material.

5.1.2 Phase 2 for Small Distances

The second phase of our algorithm receives a set of eO�ðn2xÞ
tuples in the form of h½‘i; ri�; ½g; k�; ei. In this notation, a tuple
contains a block of s, one of its corresponding candidate
substrings generated in the first phase, and their edit

distance. Then, a dynamic program selects a subset of these
tuples to form a total transformation of s into s. We run the
dynamic program in a single machine. This is possible due
to the size of the output of Phase 1 and assuming 0 < x <
5=17. We denote the tuples by T ½1�; T ½2�; . . . We assume that
the tuples are sorted in increasing order of ‘i where ties are
broken arbitrarily. In the dynamic program, for any tuple
a ¼ h½‘i; ri�; ½g; k�; ei, we compute D½a� as an approximation
of edðs½1; ri�; s½1; k�Þ using a and tuples before a in T . The
update rule of this dynamic program is

D½a� ¼ min
�
eþ ð‘i � 1Þ þ ðg � 1Þ;
min

‘i > r0
i
;g> k0;b < a;h½‘0

i
;r0
i
�;½g0;k0 �;e0i¼T ½b�

fD½b� þ eþ ð‘i � r0i � 1Þ þ ðg � k0 � 1Þg�:

In this notation, b is the last tuple used before a. Cost ‘i �
r0i � 1 corresponds to removing the characters between two
tuples in s, cost g � k0 � 1 corresponds to adding the charac-
ters between two tuples in s, and cost e corresponds to
using the transformation of the tuple a. The time complexity
of this algorithm is eO�ðn4xÞ and its memory is eO�ðn2xÞ.

Algorithm 4. Computing an Approximation of edðs; sÞ
Based on the Output Tuples of the First Round

Data: T ½1�; T ½2�; . . .
Result: an approximate value of edðs; sÞ
1: m the size of T ;
2: D an array of size m where all of its entries initialized to
þ1;

3: for a 2 ½1;m�; h½‘i; ri�; ½g; k�; ei ¼ T ½a� do
4: D½a�  ð‘i � 1Þ þ ðg � 1Þ þ e;
5: for b 2 ½1; a� 1�; h½‘0i; r0i�; ½g0; k0�; e0i ¼ T ½b� do
6: if ‘i > r0i and g > k0 then
7: D½a�  minfD½a�; D½b� þ eþ ð‘i � r0i � 1Þ þ ðg � k0 � 1Þg;
8: answer 1;
9: for a 2 ½1;m�; h½‘i; ri�; ½g; k�; ei ¼ T ½a� do
10: answer minfanswer; D½a� þ ðn� riÞ þ ðn� kÞg;
11: return answer;

In Lemma 6, we show that our overall algorithm consist-
ing of Algorithms 3 and 4, approximates the edit distance of
s and swithin a factor of 3þ �.

Lemma 6. For an arbitrarily small � > 0, there exists a mas-
sively parallel algorithm that approximates the edit distance of
two strings of length n if their distance is no more than nd

within a factor of 3þ � in two rounds. The total computation of
this algorithm is eO�ðn2�ð1�xÞ=6Þ and its parallel running time
is eO�ðnð1�dÞþð2�1=6Þð1�xÞÞ. Moreover, the algorithm uses eO
onðn2x�ð1�dÞÞ machines each with a memory of eO�ðn1�xÞ.
The proof of Lemma 6 is presented in Appendix B, avail-

able in the online supplemental material.

5.2 Large Distances ðnd > n1�x=5Þ
Recall that for large distances, we use four phases as fol-
lows. The goal of the algorithm in the first round is to find
many edges of Gt with the help of the triangle inequality.
We run our algorithm for all thresholds t ¼ ð1þ �0Þh for 0 �
h � log 1þ�0 ð2nÞ and t ¼ 0 in parallel. In the following, we
assume a threshold t is fixed. The algorithm, in this case,
consists of four phases which are described as follows.
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5.2.1 Phase 1: High Degree Case

In this phase, we use a random sampling method to select a
set of representative nodes R. Recall that we chose each
node of Gt with an independent probability of 2logn=na

where 0 < a < 1 is a parameter we fix later. We call a node
high degree (dense) if its degree is at least na, and low degree
(sparse), otherwise. Afterward, for each z 2 R, we find its
edit distance to all other nodes of Gt. We then use this infor-
mation to generate several edges of Gt as follows. We claim
that for any edge of Gt whose one of its nodes is a high
degree node we generate it with high probability. Further-
more, some edges with a distance of at most 3t may be gen-
erated in the output of the first phase.

Algorithm 5. Computing the Edit Distances Between
Repsentative Nodes z1; z2; . . . and Nodes v1; v2; . . .

Data: A subset of repsentative nodes z1; z2; . . .; zm, a set of
nodes v1; v2; . . .; vm, and a number t.

Result: edit distances between given repsentative and given
nodes

1: for z 2 fz1; z2; . . .; zm} do
2: for v 2 fv1; v2; . . .; vm} do
3: compute the edit distance between z and v;
4: if v is a candidate substring node and edðz; vÞ � 2t then
5: Output h00cs00; v; z; ti;
6: if z is a candidate substring node then
7: Output h00cs00; z; z; ti;
8: if v is a block node and edðz; vÞ � t then
9: Output h00b00; v; z; ti;
10: if z is a block node then
11: Output h00b00; z; z; ti;

Each node of Gt either corresponds to a block or a candi-
date substrings. The number of block nodes is ny and the
number of candidate substring nodes is computed as follows.
The starting points of candidate substrings are divisible by
G0 ¼ maxfbnd�y�0c; 1g. Therefore, the total number of starting
point is at most Oðn=G0Þ ¼ eO�ðnð1�dÞþyÞ and the total number
of nodes of Gt is eO�ðnð1�dÞþyÞ Hence, the expected size of jRj
is equal to ð2logn=naÞ � eO�ðnð1�dÞþyÞ ¼ eO�ðnð1�dÞþy�aÞ. For
each representative, we compute its edit distance to all other
nodes. Hence, the expected number of pairs of nodes which
we compute their edit distance is equal to

eO�ðnð1�dÞþy�aÞ � eO�ðnð1�dÞþyÞ ¼ eO�ðn2ð1�dÞþ2y�aÞ:
By using the naı̈ve DP algorithm for computing the edit dis-
tance between two nodes, the expected total running time
of this phase is equal to

eO�ðn2ð1�dÞþ2y�aÞ � eO�ððn1�yÞ2Þ ¼ eO�ðn2þ2ð1�dÞ�aÞ:
Since each machine has a memory of size eO�ðn1�xÞ and the
string size of each node is eO�ðn1�yÞ, the machine can keep
ny�x representatives and ny�x extra nodes. Therefore, the
expected number of required machines is

eO�ðnð1�dÞþy�aÞ � 1

ny�x � eO�ðnð1�dÞþyÞ � 1

ny�x

¼ eO�ðn2xþ2ð1�dÞ�aÞ:

In the following, we explain how we find the neighbors
of high degree nodes using the edit distance between rep-
resentatives and all nodes. For a node z, we call the set of
nodes with an edit distance of at most t to z (including z
itself) as NtðzÞ. Since we computed the distance of each
representative to all other nodes, this information is avail-
able to us for arbitrary t’s. For each z 2 R, we connect all
nodes of NtðzÞ to N2tðzÞ. We claim that for each node with
a degree of at least na, we found all of its neighbors with
high probability. We may found some false positive
neighbors; however, any additional generated edge has
an edit distance of at most 3t. The pseudocode of this
phase is shown in Algorithm 5. We prove our claims in
Lemma 7.

Lemma 7. Let R be a random sampling of nodes of Gt where
each node is chosen with an independent probability of p ¼
2logn=na. Let v be a block node of Gt with a degree of at
least na. For each candidate substring node u 2 NtðvÞ, there
exist a representative z 2 R with high probability such that
v 2 NtðzÞ and u 2 N2tðzÞ. Moreover, if z is an arbitrary rep-
resentative, v an arbitrary block node and u and candidate
substring node, if v 2 NtðzÞ and u 2 N2tðzÞ then
edðv; uÞ � 3t.

The proof of Lemma 7 is presented in Appendix B, avail-
able in the online supplemental material.

5.2.2 Phases 2 and 3: Low Degree Nodes

In the second and third phases, we treat the low degree
block nodes as follows. Since a node being high degree or
low degree in Gt highly depends on t we define overall
high degree and overall low degree nodes independent of t
as follows.

All blocks inGt for t ¼ n are high degree. As t decreases,
some of its edges get deleted and each nodes eventually
becomes low degree (sparse). For a block s½‘i; ri�, we call it
overall high degree if it is high degree for t ¼
edðs½‘i; ri�; s½ai;bi�Þ. We call other blocks as overall low degree.
We then consider larger blocks of size n1�y0 . A larger block
belong to one the two type:

i. Larger blocks that contain at most �0nðy�y
0Þ�ð1�dÞ over-

all low degree blocks.
ii. Larger blocks that contain more than �0nðy�y

0Þ�ð1�dÞ

overall low degree blocks.
The overall low degree blocks of all larger blocks of

type (i) can be ignored with a multiplicative error of no
more than 1þ �0. Therefore, from this point we only con-
centrate on larger blocks of type (ii). We claim that by
sampling each low degree block with a probability of p ¼
3ð1=�02Þlog 2n= nðy�y

0Þ�ð1�dÞ, we catch at least one overall
low degree block for each larger block of type (ii) with
high probability.

To compute the edit distance between the chosen block
and all of their candidate substrings, we need an expected
number of machines of at most

p � ny �
eO�ðndÞ
n1�x ¼ eO�ðnxþy0 Þ:
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Moreover, the expected total running time of computing
these distances is at most

p � ny � eO�ðnyÞ � eO�ðn2ð1�yÞÞ ¼ eO�ðn2�ðy�y0Þþð1�dÞÞ:

Suppose we find an overall low degree block s½‘i; ri� in Gt

where t � edðs½‘i; ri�; s½ai;bi�Þ � ð1þ �0Þt. Also recall that,
one of the candidate substrings such as s½a0i;b0i� is guaranteed
to be approximately optimal. If all of blocks in the same larger
block as s½‘i; ri�, such as s½‘j; rj� forced to be transformed it into
s½a0i þ ð‘j � ‘iÞ;b0i þ ðrj � riÞ� the imposedmultiplicative error
is bounded by 2þ 3�0. In the following, we use this technique
to extend lowdegree block.

In the third round, every pair of low degree block and its
neighbors is extended to ny�y0 nearby blocks, which are in
the same larger block. Note that since a low degree node
has at most na neighbors, the total number of pairs is lim-
ited. More precisely, the expected number of generated
pairs is at most

p � ny � na � ny�y0 ¼ eO�ðnyþaþð1�dÞÞ:

Since ny�x pairs can be process in a single machine, the
expected number ofmachines needed in this round is equal to

eO�ðnxþaþð1�dÞÞ:

Moreover, the expected total running time of the third round is

eO�ðnyþaþð1�dÞÞ � eO�ðn2ð1�yÞÞ ¼ eO�ðn2�yþaþð1�dÞÞ:

Algorithm 6. Extending high degree and low degree
blocks

Data: The blocks s½‘i; ri� for, a subset of candidate substrings
for these blocks, all tuples of type “b” (Tb½1�; Tb½2�; . . .)
for these blocks and all tuples of type “cs”
(Tcs½1�; Tcs½2�; . . .) for these candidate substrings.

Result: edit distances between high degree blocks and low
degree extension for low degree blocks

1: for t 2 f0; ð1þ �0Þa for 0 � a � log �0n} do
2: for all given blocks s½‘i; ri� do
3: if there exists a tuple Tb½a� of type “b” for the given block and

t then
4: let z be the third value of Tb½a�;
5: for every Tcs½b� containing z and t do
6: let u be the third value of Tcs½b�;
7: Output h00high degree00; ½‘i; ri�; u; ti;
8: else
9: if a random variable with a common seed between

machines is less than p ¼ 3ð1=�02Þlog 2n=nðy�y
0Þ�ð1�dÞ

then
10: compute the edit distance s½‘i; ri� and all of related

candidate substrings in the input;
11: for any candidate interval s½g; k� where edðs

½‘i; ri�; s½g; k�Þ � t do
12: for any block s½‘j; rj� which is the same larger block

as s½‘i; ri� do
13: Output h00extend00; ½‘j; rj�; ½g þ ð‘j � ‘iÞ; kþ ðrj � riÞ�; ti;

5.2.3 Phase 4: Computing the Overall Transformation

The DP algorithm of this phase is similar to that of small
distances. In this round, we receive at most eO�ðn2yÞ tuples in
the form of h½‘i; ri�; ½g; k�; ei. In this notation, the tuple corre-
sponds to a block, its corresponding candidate substring
and their edit distance. Then, a dynamic program selects a
subset of these tuples to form a total transformation of s
into s. We run the dynamic program in a single machine.
We again denote the tuples by T ½1�; T ½2�; . . . and assume
that the tuples are sorted in increasing order of ‘i where ties
are broken arbitrarily. The time complexity of this algorithm
if trivially implemented is eO�ðn4yÞ. However, by suitable
data structure the time complexity is improved to eO�ðn2yÞ.
Moreover, the memory complexity of this algorithm iseO�ðn2yÞ. The rest of the algorithm is the same as the second
round of small distances. Aminor difference is that if the can-
didate substring of two tuples intersects, we may choose both
of them, butwe add the cost of removing the commonpart.

In Lemma 8,we show that our overall algorithm consisting
of Algorithms 5, 6, 7, and a dynamic program similar to
Algorithm 4, approximates the edit distance of s and swithin
a factor of 3þ �. The proof of Lemma 8 is presented in
Appendix B, available in the online supplementalmaterial.

Lemma 8. For an arbitrarily small � > 0, there exists a mas-
sively parallel algorithm that approximates the edit distance of
two strings of length n if their distance is at most nd within a
factor of 3þ � in four rounds. This algorithm useseO� ðnmaxf2xþ2ð1�dÞ�a;xþy0;xþð1�dÞþagÞ machines each with a
memory of eO�ðn1�xÞ. The total computation of this algorithm iseO� ðn2�x=4Þ.

5.3 Overall Algorithm

By substituting d ¼ 1� x=5, a ¼ ð3=5Þx, y ¼ ð6=5Þx, y0 ¼
ð4=5Þx, and x � 5=17, and using Lemmas 6 and 8 we can
conclude the following theorem.

Theorem 9. Let 0 � x � 5=17 and � > 0 be two arbitrary num-
bers. There exists a massively parallel algorithm that approxi-
mates the edit distance between two strings of length n within a
factor of 3þ � in four rounds. The total computation of this

algorithm is eO�ðn2�minð1�x6 ;2x5 ÞÞ, and it uses eO�ðnð9=5ÞxÞmachines

each with a memory of eO�ðn1�xÞ. Moreover, the parallel run-

ning time of our algorithm is eO�ðn2�minð5þ49x30 ;11x5 ÞÞ.
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Algorithm 7. Computing the Edit Distances Between a
Block and a Candidate Substring Which Came From a
Low Degree Extension
Data: a block s½‘i; ri� and a candidate substring s½g; k�.
Result: the edit distance between s½‘i; ri� and s½g; k�

1: Use the naı̈ve DP algorithm to compute edðs½‘i; ri�; s½g; k�Þ;
2: Output h00low degree ext00; ½‘i; ri�; ½g; k�; edðs½‘i; ri�; s½g; k�Þi;
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