
RAQNet: A Topology-Aware Overlay Network

Seyed Iman Mirrezaei1, Javad Shahparian1, and Mohammad Ghodsi1,2,�

1 Computer Engineering Department, Sharif University of Technology, Tehran, Iran
2 IPM School of Computer Science,Tehran, Iran

{mirrezaei,shahparian}@ce.sharif.edu, ghodsi@sharif.edu

Abstract. Peer-to-peer overlay networks provide a useful infrastructure
for building distributed applications. These networks provide efficient
and fault-tolerant routing and object locating within a self-organizing
overlay network. This paper presents a multi-dimensional overlay net-
work called RAQNet which is based on RAQ1. RAQ supports exact
match queries and range queries over multi-dimensional data efficiently.
Moreover, its routing cost does not depend on the dimension of the search
space. In RAQNet, we have improved its original routing algorithms and
extended it to have topology awareness property. In RAQNet, nodes are
connected to each other if their labels are “close” to each other with
respect to the topology of its underlying network. A topology match
between the overlay and underlying network results in reduced routing
delay and network link traffic. In comparison with RAQ, we will de-
scribe different node-join algorithms and routing table maintenance in
order to provide the topology awareness. We present the experimental
results through a prototype implementation of two emulated networks.

Keywords: Overlay Network, Topology Awareness, Proximity Metric.

1 Introduction

A peer-to-peer (P2P) overlay network is a logical network on the top of its
physical layer. The overlay organizes the computers in a network in a logical
way so that each node connects to the overlay network through its neighbors.

Several recent systems (CAN [10], Coral [12], Chord [11], Pastry [6] and
Tapestry [4]) have recently appeared as flexible infrastructure for building large
P2P applications. A DHT can be built using these networks, which allows data
to be uniformly distributed among all the participants in such systems.

In these overlays, any item can be found within a bounded number of routing
hops, using a small per-node routing table. While there are algorithmic similari-
ties among these overlays, one significant difference lies in the approach they take
to consider topology awareness in the underlying network. Chord, for instance,
does not consider topology that it rides. As a result, its protocol for maintaining

� This work has been partially supported by IPM School of CS (contract: CS1385-2-01)
and Iran Telecommunication Research Center (ITRC).

1 A Range-Queriable Distributed Data Structure [1].

A.K. Bandara and M. Burgess (Eds.): AIMS 2007, LNCS 4543, pp. 13–24, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

14 S.I. Mirrezaei, J. Shahparian, and M. Ghodsi

the overlay network is very light weight, but queries may travel arbitrarily long
distances in the underlying network in each routing hop.

Content Addressable Network (CAN) is another overlay network which as-
sumes the attendance of a set of nodes that act as landmarks on the Internet,
in order to optimize distances among nodes. Each CAN nodes measure their
relative distances from this set of landmarks and measures its round-trip time
to each of these landmarks and orders these values in order of increasing RTT.
According to these values, topologically close nodes are likely to have the same
ordering and so neighbors in the overlay are likely to be topologically close on
the Internet [10].

Coral is a P2P content distribution system which is based on a distributed
sloppy hash table (DSHT) [12]. In order to restrict queries to close nodes, Coral
gathers nodes in groups called clusters. The diameter of a cluster is the maximum
desired round-trip time (RTT) between any two nodes that it contains. So, Coral
uses round-trip time as distance metric obtained from the underlying topology
to obtain better performance [12].

We see that the mentioned overlays use underlying topological information
to improve their communication performance. These overlays are aware of their
underlying network and use this to improve their performance.

A mathematical model for topology awareness of P2P overlay networks has
been introduced by Rostami et al [3]. They constructed their model based on an
optimization problem called IP labeling. They also proved that IP labeling opti-
mization is an NP-hard problem. So, it is impossible to build a perfect topology
aware overlay network, but it can be solved in certain situations.

Based on RAQ [1], we present a new multi-dimensional overlay network, called
RAQNet, with the topology awareness and improve its routing algorithms. RAQ
supports exact match queries and range queries over multi-dimensional data
efficiently. The routing cost in RAQ does not depend on the dimension of search
space. In RAQNet overlay, nodes are connected to each other if they have the
same labels and also are close to each other with respect to the topology of
the underlying network. A topological match between overlay and underlying
network resulted in reduced routing delays and network link traffic. We will
describe a refined protocol for joining nodes and failure recovery in order to
provide a topology-aware overlay network.

The rest of this paper is organized as follows. In Section 2, we provide a brief
overview of the RAQ. Design of RAQNet and the new protocols for joining a node
and failure recovery are presented in Section 3. Section 4 presents experimental
results. We will conclude the paper in Section 5.

2 Basic RAQNet Structure

In this section, we introduce the basic design of RAQ and present a brief overview
of its data structure.

RAQNet: A Topology-Aware Overlay Network 15

2.1 Overview of RAQ Data Structure

In RAQ, the search space is d-dimensional Cartesian coordinate space which
is partitioned among n nodes of the overlay network by a partition tree. Each
node has O(log n) links to other nodes. Each single point query can be routed
via O(log n) message passing. In addition, RAQ supports range queries as well
as single point query through O(log n) communication steps. Each node is cor-
responded to a region and it is responsible for the queries targeting any point
in its region. Furthermore, out-degree of a node and routing cost in RAQ is not
dependent on the dimension of the search space. The partition tree splits the
search space with no attention to the dimension of the search space.

2.2 Space Partitioning

The partition tree is the main data structure in RAQ which partitions the search
space into n regions corresponding to n nodes. Assuming r is the root of partition
tree and representing the whole search space, each internal node divides its
region into two smaller regions using a hyperplane equation. Although only leaves
in the partition tree represent actual network nodes, each node in this tree
has a corresponding region in the search space. Every network node x which
corresponds to a leaf in the partition tree assigned a Plane Equation or PE to
specify its region in the whole space. Each PE consists of some paired labels
which is defined as XPE = ((p1, d1), (p2, d2), · · · , (pr(x), dr(x))). In each label,
r(x) presents the distance of x from the root of the tree and pi shows the plane
equation that partitions the ith region into two regions and di determines one
side of the plane pi (left or right). Every leaf node in the RAQ stores its own PE
as well as the PE of its links. Using theses information, every node like x can
locally recognize whether a requested query belongs to a node to the left or the
right of x or to the left or right of any of its links in the partition tree. Figure 1
(right) portrays partitioning of 2-dimension search space. In figure 1 (left), the
PE of node c is [(x = 4, −), (y = 2, +), (x = 2, +), (y = 1, −)]. We use “+” and
“-” in the PE of nodes to determine one side of the plane (left or right).

2.3 Network Links in RAQ

Every node has some links to other nodes of the network. Each link is the address-
ing information of the target node which can be its IP address and its PE. Con-
nection rule in RAQ is based on partition tree. Consider the node x and its PE,
x has link to one of node in each of these sets: [((p1, d̄1))],[((p1, d1), (p2, d̄2))],· · ·,
[((p1, d1), (p2, d2), · · · , (pr(x), d̄r(x)))], where d̄i is the opposite side of di. It is easy
to show that each node has links to O(log n) nodes in RAQ.

2.4 Query Routing in RAQ

Whenever a node in the network receives a single point query, it must route the
query to the node which is responsible for the region containing the point. Once

16 S.I. Mirrezaei, J. Shahparian, and M. Ghodsi

the query Q is received by a node z, if destination point matched with PE of
node z completely, then routing is finished. Otherwise, node z sends the query
via a network link to a node y with a PE that matches the destination point
at a higher level. This will go on further until the query reaches the destination
node.

3 Design of RAQNet

In this section we modify RAQ to build a topology aware overlay network. We
select node’s link based on RAQ data structure and also based on topology of
underlying network. Additionally, we hold more node pointers in routing tables
in comparison to the basic data structure. A new routing table is also added.
We thus propose different procedures for join, departure, and maintenance of
RAQNet overlay in order to provide topology awareness.

Each RAQNet node has a fairly random point in a d-dimensional Cartesian
search space. As in RAQ, search space is a logical space that is divided among
network nodes and each node is responsible for responding to the queries match-
ing with its PE. We suppose that PE of nodes are strings and contains some
paired label as we mentioned before. We enforces some constraints on the plane
equations that a node may choose when it joins the network and splits another
region node. These constraints cause the PE of nodes remain simple after node’s
join or departure. The constraints that we enforce are the following:

– Each plane should be perpendicular to a principal axis. Hence, in a d-
dimensional space of (x1, x2, · · · , xd) each plane takes the form of xi = c
for some 1 ≤ i ≤ d and some value of c. This effectively means that each
plane equation partitions the regions in the space based on the value of xi

for some i.
– If the search space is d-dimensional, we define the form of the plane equation

that may be assigned to an internal node depending on the depth of that
node. If A is an internal node, the plane equation assigned to A must be of
the form xi = c for an arbitrary value of c, that is for any given i, all of the
nodes whose depth numbers are i are assigned plane equations of the form
xi = c, so that regions can be re-merged when node leaves the overlay. For a
2-d search space, All the internal nodes which are in depth i split the search
space along dimension X .

This implies that whenever a new node joins the RAQNet and divides the
region of another node which leads to a new internal node, the plane equation
of that internal node must obey the above constraints.

3.1 Routing Tables in RAQNet

The routing state maintained by each node consists of a routing table and a hop
table. Each entry in the routing tables contains the PE and IP address of a node.

RAQNet: A Topology-Aware Overlay Network 17

A B C E F

H I J

D

KG

X=4

Y=2 Y=3

X=2 X=3 X=8 X=6

Y=3Y=1Y=1

K
J

F

E

G

D
B IH

CA

X=3 X=6

Y=2

Y=1

Y=3

X=4X=2 X=8

Fig. 1. Left: Routing a query from node whose PE is [(x = 4, +), (y = 3, +), (x = 6, +)]
to destination point (2.5, 1.5), Right:2-dimension search space

Routing Table. The routing table is organized with O(log n) rows and 2t

columns, where t is a configuration parameter with typical value of 2. The entry in
rth row and nth column of the routing table refers to a node whose PE that shares
the first r labels with the local node’s PE, and its (r + 1)th label of node’s PE,
corresponds to plane like xr+1 = c. All entries in row r were sorted increasingly
according to values of (r + 1)th label of PE. Figure 2 depicts a sample routing
table. This routing table is similar to those used by Tapestry[4] and RRR[5].

Each entry in the routing table contains the IP address of one of potentially
many nodes whose PE have the appropriate prefix; in practice, a node is chosen
that is close to the local node, according to the topology of underlying networks.
We will show in 3.3.

Hop Table. The hop table is the set of H nodes with half of label’s of their PE
that are shared with the present node’s PE’s. All nodes in hop table are sorted
increasingly according to

∣
∣
∣
present nodePE

2

∣
∣
∣+1th label of their PE. A typical value

for H is approximately 2t or 2 ∗ 2t. Figure 2 shows a routing table and hop table
of node c whose PE is (X = 4, −), (Y = 2, −), (X = 2, +), (Y = 1, −).

3.2 Query Routing

At each routing step, the current node usually sends the query to a node whose
PE shares at least one label longer with the destination point than the prefix with
the local node’s PE. If no such node is known, the query is sent to a node whose
PE is closer to the destination point and shares a prefix with the destination
point having the same length. If there is no such node, the query is delivered to
the local node because it is closest node to the destination point. Before sending
a query to the one of the nodes in rth row , we search for the proper node whose
(r + 1)th label of its PE is also matched with the destination point.

3.3 Neighbor Selection Based on Topology Awareness

This section focuses on topology aware property. RAQNet seeks to exploit topol-
ogy awareness from the underlying network in order to fill its routing table rows

18 S.I. Mirrezaei, J. Shahparian, and M. Ghodsi

Routing Table

BA

*FEG

**D*

KJIH(X=4,+)

(X=4,-),(Y=2,+)

(X=4,-),(Y=2,-),(X=2,-)

(X=4,-),(Y=2,-),(X=2,+),(Y=1,+)

(X=4,-),(Y=2,+)(X=4,-),(Y=2,+) Hop Table

A B D(X=4,-),(Y=2,-)

Fig. 2. Left: Routing table of node c, Right: hop table of node C. The associated IP
addresses are not shown. If no node was known with a suitable PE, then the routing
table entry is filled with “*”.

1. if (z.isInPlaneEquationofHopTable(l)
2. //Use the hop table
3. forward to Hi such that Hi is closer to z than other nodes in H table
4. else
5. //Use the routing table
6. Let r = PlaneEquationMatch(z, l)
7. Let c = FindingProperColumn(z, r)
8. if (Rc

r exists)
9. Forward to Rc

r
10. else
11. //Rare case
12. forward to t ∈ H ∪ R such that
13. PlaneEquationMatch(z, l) ≥ r

Fig. 3. RAQNet Routing procedure, when a query with destination point z arrives at
a node whose PE is l. Rc

r is the entry in the routing table R at cth column and rth
row.

effectively. Hence, any node with the required prefix in PE can be used to fill an
entry, topology aware neighbor selection selects the closest node in the underlying
network among nodes whose PE have the required prefix. Topology awareness
relies on a proximity metric that indicates the “distance” between any given
pair of nodes. The choice of a proximity metric depends on the desired quality
of the resulting overlay (e.g., low delay, high bandwidth). Our proximity metric
in RAQNet overlay network is round trip time.

Topology aware neighbor selection was first proposed in PRR [5] and pas-
try [6]. In RAQNet, the expected distance traveled in the beginning routing hop
is small and it increases at each successive routing step. Because the number of
nodes decreases with the increasing length of the prefix match between their PE
and the destination point.

3.4 Node Join

When a new node ,x , joins the overlay, it chooses a fairly random point X in
the search space and contacts an existing close node e sending its join request.
The close node e can be found using IP multi-cast in some applications or the
algorithm described in Section 3.7. RAQNet uses the join mechanism similar to
pastry [6] as follows.

RAQNet: A Topology-Aware Overlay Network 19

Node e routes join request using X as the query, and x gets the first row of
its routing table and first label of its PE from the node e. Then e forwards the
join request to the second node which sends second row of its routing table and
second label of its PE to x and so forth. We will show that x’s resulting routing
table is filled with close nodes if node e is close to x, according to the proximity
metric.

We assume that triangle inequality holds in the proximity space and entries
of each node’s routing table refers to overlay nodes close to itself according to
proximity metric.

x is close to e because we search for a close node to send join request. Also,
the nodes in the first row of e’s routing table are close to e. Due to triangle
inequality, these nodes are also close to x. This holds for the next rows in the
same way.

It is also important to update other node’s routing tables to ensure that they
are filled with close nodes after new nodes join the overlay network. Once x has
initialized its own routing table, it sends the each row of its routing table to
each node that appears as an entry in that row. This causes both to announce
its attendance and to spread information about new nodes that joined before.
Each node receives a row then checks the nodes in the row to measure if x or one
of the entries is closer than the corresponding entry in its own routing table, and
updates its routing table properly. This procedure ensures that routing tables
filled with close nodes. Additionally, x and the nodes that appear in nth row
of x’s routing table form a group of 2t close nodes whose PEs share in the first
n labels. It is clear that these nodes need to know of x’s entrance since x may
displace a more distant node in one of the node’s routing tables. In an opposite
way, a node with same prefix in the first n labels of its PE that is not a member
of this group is more distant from the members of the group, and therefore from
x. Thus, x’s entrance is not likely to affect its routing table and it does not need
to be informed of x’s entrance.

3.5 Node Departure

According to RAQ [1], each node has departure links to the nodes which have
links to it. When a node decides to leave overlay, it informs their neighbors by
departure links. All nodes that receive this message, mark their corresponding
entry in the routing table. Instead of using a marked entry to route a query,
RAQNet routes the query to another node in the same row whose PE also
matches the destination point. If the next node has a proper entry that matches
the next label of the destination point, it automatically informs the previous
node of that entry. The next node is usually an entry in the same row as the
failed node. If that node provides an alternative entry for the failed node, its
expected distance from the local node is low since all three nodes were member
of the same group of close nodes with same PE prefix. If no replacement node
is supplied by the next node, a replacement is found by triggering the routing
table maintenance task, which is described next.

20 S.I. Mirrezaei, J. Shahparian, and M. Ghodsi

3.6 Routing Table Maintenance

Whenever an overlay node could not find an alternative entry for its failed entry,
it triggers the maintenance procedure to handle this problem.

Another concern is that deviations could cascade and lead to a slow deteri-
oration of the topology aware properties gradually. To prevent a deterioration
of the route quality, each node runs a periodic routing table maintenance task
(e.g., every 20 minutes). The maintenance task performs the following procedure
for each row of the local node’s routing table. It selects a random entry in the
row, and requests a copy of associated node’s row. Each entry in that row is
compared to the corresponding entry in the local routing table. If they differ,
the node probes the distance to both entries and puts the closest node in its own
routing table.

3.7 Locating a Nearby Node

When a new node x want to join to overlay, it should contact the close node e
around itself to fill its routing table with close nodes properly. Karger et al [8]
proposed an algorithm to find close node but this would require maintaining
additional information. In Figure 4 we describe an algorithm to find a close
overlay node to x. This algorithm is interesting because it does not need any other
information beyond the routing table and hop table that are already preserved
by RAQNet nodes.

1. discover (anyNode)
2. nodes = getHopTable (anyNode)
3. nearNode = pickClosest(nodes)
4. depth = getMaxRoutingTableLevel(nearNode)
5. closest = nil
6. while (closest ! = nearNode)
7. closest = nearNode
8. nodes = getRoutingTable(nearNode,depth)
9. nearNode = pickClosest(nodes)

10. if (depth > 0) depth = depth −1
11. end
12. return closest

Fig. 4. Finding near node

This algorithm exploits position of node in the network. In each step, distance
of all nodes in the same row is checked in order to find closer node from joining
node. This is achieved bottom up by picking the closest node at each level and
getting the next level from it. This performs a constant number of probes at
each level but the probed nodes get closer at each step. The last phase repeats
the process for the top level until there is no more progress. As it was showed in
RAQ, routing tables have log n rows. Hence, the complexity of this algorithm is
O(log n) too (n is number of nodes in the overlay network).

RAQNet: A Topology-Aware Overlay Network 21

4 Experimental Results

In this section, we present experimental results quantifying the performance of
topology aware neighbor selection in RAQNet under realistic conditions. The
results were obtained using a RAQNet implementation running on top of a net-
work simulator, using Internet topology models. The RAQNet parameter was
set to d = 2. Higher dimensions can be used without imposing extra over-head
because routing mechanism of RAQNet does not depend on the dimension of the
search space. Our results obtained with a simulated RAQNet overlay network of
10,000 nodes.

4.1 Network Topologies

Two simulated network topologies were used in the experiments. In the “Sphere”
topology nodes are placed at uniformly random locations on the surface of a
sphere with radius 1000. The distance metric is based on the topological dis-
tance between two nodes on the sphere’s surface. However, the sphere topology
is not realistic, because it assumes a uniform random distribution of nodes on the
Sphere’s surface, and its proximity metric satisfies the triangulation inequality. A
second topology was generated by the Georgia Tech transit-stub network topol-
ogy model[9]. The round trip delay (RTT) between two nodes, as provided by
the topology graph generator, is used as the proximity metric with this topology.
As in the real Internet, the triangle inequality does not hold for RTTs among
nodes in the this topology. Our experimental results are significantly good for
both topologies although our assumption of triangle inequality does not hold for
the second topology.

4.2 Routing Hops and Distance Ratio

In the first experiment, 200 lookup queries are routed using RAQNet from ran-
domly chosen nodes, using a random point. Figure 5 (left) shows the number of
RAQNet routing hops and the distance ratio for the sphere topology. Distance
ratio is defined as the ratio of the distance traveled by a RAQNet query to the
distance between its source and destination nodes, measured in terms of the prox-
imity metric. The distance ratio can be interpreted as the penalty, expressed in
terms of the proximity metric, associated with routing a query through RAQNet
instead of sending the query directly in the Internet.

Two sets of results are shown. “RAQ” shows the corresponding experimental
results with RAQ. “RAQNet” shows results of experiments in RAQNet overlay
network. According to analysis in RAQ [1], the expected number of routing hops
is slightly below log 10000

2 = 6.64 and the distance ratio is small. The reported
hop counts are independent of the network topology, therefore we present them
just for the sphere topology.

22 S.I. Mirrezaei, J. Shahparian, and M. Ghodsi

6.97 6.98

1.4

3.68

0

1

2

3

4

5

6

7

8

 RAQNet RAQ RAQNet RAQ
Number of hops Distance ratio

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5

Hop number

P
er

 h
op

 d
is

ta
nc

e

Routing in RAQNet

Routing in RAQ

Fig. 5. Left: Number of routing hops and distance ratio in the sphere topology, Right:
Distance traversed per hop in the sphere topology

0

100

200

300

400

500

600

1 2 3 4 5
Hop number

P
er

 h
op

 d
is

ta
nc

e

Routing in RAQNet

Routing in RAQ

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Distance between source and destination

D
is

ta
nc

e
tr

av
er

se
d

by
 R

A
Q

N
et

 q
ue

ry

400 800 1600 20001200 2400 3200280

Fig. 6. Left: Distance traversed per hop in the GT-ITM topology, Right: Number of
routing hops and distance ratio in the sphere topology

4.3 Routing Distance in RAQNet

Figure 5 (right) shows the distance messages travel in each following routing
hops. The results confirm the increase in the expected distance of following hops
up to the fourth hops. Moreover, in the absence of the topology awareness, the
average distance traveled in each hop is constant and corresponds to the average
distance between nodes which are placed on the surface of a sphere 1571 = π∗r

2
(where r is the radius of the sphere).

Figures 6 (left) shows the same results for the GT-ITM topology respectively.
Due to the nonuniform distribution of nodes and the more complex proximity
space in this topology, the expected distance in each following routing step still
increases monotonically. However, the node join algorithm continues to produce
routing tables that refer to close nodes, as indicated by the modest difference in
hop distance to the routing tables in the first three hops.

Figures 6 (right), and 7 (left) show raster plots of the distance query travel in
RAQNet, as a function of the distance between the source and destination nodes,
for each of the two topologies. Queries were sent from 50 randomly chosen source
nodes to random destination points in this experiment. The mean distance ratio

RAQNet: A Topology-Aware Overlay Network 23

0

500

1000

1500

2000

2500

3000

Distance between source and destination

D
is

ta
nc

e
tr

av
er

se
d

by
 R

A
Q

N
et

 q
ue

ry

200 400 800 1000600 1200 1400

20

22

24

26

28

30

32

34

1000 2000 3000 4000 5000

Number of nodes in RAQNet overlay

 N
um

be
r

of
 n

od
es

 p
ro

be
d

by
 j

oi
ni

ng

qu
er

y

Min
Mean
Max

Fig. 7. Left: Number of routing hops and distance ratio in the GT-ITM topology,
Right: number of probes by a newly joining node

is shown in each graph as a solid line. The results show that the distribution
of the distance ratio is relatively firm around the mean. Not surprisingly, the
sphere topology produces the best results, because of its uniform distribution of
nodes and the geometry of its proximity space. However, the far more realistic
GT-ITM topology produces still good results, with a mean distance ratio of 1.63,
a maximal distance ratio of about 8.3, and distribution that is fairly firm around
the mean.

4.4 Overhead of Node Join Protocol

In this section, we measure the overhead incurred by the node join protocol to
preserve topology awareness in the routing tables. We measure this overhead in
terms of the number of probes, where each probe corresponds to the communica-
tion required to measure the distance according to the proximity metric between
two nodes. Of course, in our simulated network, a probe simply involves looking
up the corresponding distance according to the topology model. However, in a
real network, probing would likely require at least two message exchanges. The
number of probes is therefore a meaningful measure of the overhead required to
maintain the topology awareness. Figure 7 (right) shows the maximum, mean
and minimum number of probes performed by a node joining the RAQNet over-
lay network. This overhead is independent of number of nodes which we varied
from 1,000 to 5,000 nodes. In each case, the probes performed by the last ten
nodes that joined the RAQNet overlay network were recorded. It is assumed
here that once a node has probed another node, it stores the result and does not
probe again.

5 Conclusion

This paper presented a new multi-dimensional topology aware overlay network
and analysis as well as an experimental evaluation of the RAQNet. A refined
protocol for node joining and node failure recovery achieves in order to provide

24 S.I. Mirrezaei, J. Shahparian, and M. Ghodsi

topology awareness in RAQNet overlay network. Experimental results showed
that topology aware properties can be achieved with low overhead in network
topologies. Additionally, simulations on two different Internet topology models
show that these properties can hold in more realistic network topologies. The
results also show that considering topology awareness can be provide a significant
performance improvement relative to topology unaware routing.

Acknowledgments. The authors would like to thank Payam Bahreini, Hesam
Chiniforoushan and Hojatollah Vaheb for their reviews and supports.

References

1. Nazerzadeh, H., Ghodsi, M.: RAQ: A range queriable distributed data structure
(extended version). In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O.
(eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 264–272. Springer, Heidelberg (Febru-
ary 2005)

2. Alaei, S., Toossi, M., Ghodsi, M.: SkipTree: A Scalable Range-Queryable Distrib-
uted Data Structure for Multidimensional Data. In: Deng, X., Du, D.-Z. (eds.)
ISAAC 2005. LNCS, vol. 3827, pp. 298–307. Springer, Heidelberg (2005)

3. Rostami, H., Habibi, J.: A Mathematical Foundation for Topology Awareness of
P2P Overlay Networks. In: Zhuge, H., Fox, G.C. (eds.) GCC 2005. LNCS, vol. 3795,
pp. 906–918. Springer, Heidelberg (2005)

4. Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An infrastructure for fault-
resilient wide-area location and routing, Tech. Rep. UCB//CSD-01-1141, U.C.
Berkeley (April 2001)

5. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated
objects in a distributed environment. In: Proc. 9th ACM Symp. on Parallel Algo-
rithms and Architectures, June 1997, Newport, Rhode Island, USA, pp. 311–320
(1997)

6. Rowstron, A., Druschel, P.: Pastry: Scalable,distributed object location and rout-
ing for large-scale peer-to-peer systems. In: Proc. IFIP/ACM Middleware 2001,
Heidelberg, Germany (November 2001)

7. Costa, M., Castro, M., Rowstron, A., Key, P.: PIC: Practical Internet Coordinates
for Distance Estimation. In: 24th IEEE International Conference on Distributed
Computing Systems (ICDCS’ 04), Tokyo, Japan (March 2004)

8. Karger, D.R., Ruhl, M.: Finding nearest neighbors in growth-restricted metrics.
In: STOC’02 (July 2002)

9. Zegura, E., Calvert, K., Bhattacharjee, S.: How to model an internetwork. In:
INFOCOM96 (1996)

10. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. In: Proc. of ACM SIGCOMM (August 2001)

11. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the ACM SIGCOMM ’01 Conference, San Diego, California (August 2001)

12. Freedman, M., Mazieres, D.: Sloppy hashing and self-organizing clusters. In: Proc.
2nd International Workshop on Peer-to-Peer Systems (IPTPS03) (2003)

	Introduction
	Basic RAQNet Structure
	Overview of RAQ Data Structure
	Space Partitioning
	Network Links in RAQ
	Query Routing in RAQ

	Design of RAQNet
	Routing Tables in RAQNet
	Routing Table.
	Hop Table.

	Query Routing
	Neighbor Selection Based on Topology Awareness
	Node Join
	Node Departure
	Routing Table Maintenance
	Locating a Nearby Node

	Experimental Results
	Network Topologies
	Routing Hops and Distance Ratio
	Routing Distance in RAQNet
	Overhead of Node Join Protocol

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

