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Abstract— Modern search engines use link structure of the
World Wide Web in order to gain better results for ranking
the results of users’ queries. One of the most popular ranking
algorithms which is based on link analysis is HITS. It generates
very accurate outputs but because of huge amount of online
computations, this algorithm is relatively slow. In this paper we
introduce PHITS, a parallelized version of the HITS algorithm
that is suitable for working with huge web graphs in a reason-
able time. For implementing this algorithm, we use WebGraph
framework and we focus on parallelizing access to web graph as
the main bottleneck in the HITS algorithm.

I. INTRODUCTION

Search technology is one of the most important reasons for
success of the web. The huge amount of information available
on the web, its high growth rate, and its unstructured nature,
all increase the need for search engines with high performance
and accurate results.

One of the major components of each search engine is
its ranking algorithm. Traditional Information Retrieval (IR)
systems usually use some models like VMS [4] and compute
rank of results using content similarity measures between
user’s query and retrieved documents. But in the context of
the web, there are some problems with these approaches. For
example, spamming may lead to inefficient ranking. Some
methods have been proposed to encounter these problems most
of which uses some implicit information which is embedded
in the web graph. These methods are known as Link-Analysis
based algorithms.

PageRank [5] and HITS (Hyperlink Induced Topic Search)
[1] are the most well known algorithms in this category.
PageRank, which is used by Google for ranking its results,
is an offline and query-independent ranking algorithm. This
means that the ranking is independent of the specific queries
of users and therefore can be done once and used for all of
the upcoming queries. On the other hand, HITS is an online
and query-dependent algorithm. Being query dependent makes
HITS more precise but it has some disadvantages too. In fact,
required online computations for this algorithm is too much
and the response time of the search engine after submitting
queries by users is not acceptable. To overcome this problem,
in this paper we will exploit the parallel processing methods
to improve the execution performance of the algorithm.

The rest of this paper is organized as follows. In section II,
link-analysis based algorithms in general and HITS as a special
case are discussed. At the end of this section, some of the
variations and improvements for the HITS algorithm that are
suggested in the literature are also described. Implementing the

HITS algorithm and its parallel version, PHITS, are discussed
in sections III and IV respectively. Finally, last section of this
paper contains conclusion and some ideas for future work in
this topic.

II. RANKING ALGORITHMS BASED ON LINK STRUCTURE

ANALYSIS

Current popular search engines apply many advanced tech-
niques to improve the user satisfaction and the relevance of the
returned results to the given query. One of the most important
techniques is to exploit the connectivity information (i.e. link
structure) hidden in the web documents to improve the search
results.

Nowadays nearly all commercial web search engines use
one or more algorithms for analyzing the link structure of the
web. The main idea of these methods is using the implicit
information entailed from the link structure of the web. For
example, we can observe that often the pages that are linked
directly to each other have similar contents. As mentioned
in the previous section the most well known algorithms for
analyzing the link structure of the web graph are the HITS
and the PageRank algorithms. The main focus of this paper is
on the HITS algorithm.

A. The HITS Algorithm

In this algorithm pages are divided into two categories: hubs
and authorities. Hub pages are those that have good lists of
links related to a subject. Authority pages are those that are
listed on good hub pages. A good hub page for a subject
links to many authoritative pages for that subject. Similarly,
a good authority page for a subject is linked by many good
hub pages for that subject. Goodness is measured by hub and
authority scores. Due to the circular definition, these scores
are calculated by iteration.

The steps of detecting hubs and authorities in this algorithm
are as follows. First the user’s query is sent to a keyword based
search engine and some of the pages (e.g. 200 of them) that
contain the keywords of the user’s query are selected. These
pages are called the root set. The second step of this algorithm
is to expand the root set via adding pages that are directly
linked to these pages by using forward or backward links.
This augmented set is called the base set. Authority and hub
values for base set nodes are maintained in two vectors, x and
y. The elements of these vectors are initialized to 1 and for
computing their final values the following iterative equations
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are used:
xi =

∑
j:(j,i)∈E

yj (1)

yi =
∑

j:(i,j)∈E

xj (2)

In these equations, (i, j) ∈ E means that a link from page i
to page j is in the web graph.

In [1], it is proved that the sequences x1, x2, . . . and
y1, y2, . . . converge. But the question is, how many iterations
of the algorithm are required for these sequences to converge.
For answering this question, we ran the algorithm with random
data several times until the results became stable. The average
result is shown in Fig. 1. As this figure shows, HITS algorithm
converges very rapidly.

Fig. 1. Convergence of the HITS algorithm

Some search engines have used the HITS algorithm for
implementing their ranking subsystems. The first of them is
Clever [6], [7], a project sponsored by IBM, which uses a
modified version of HITS. Another well known HITS-based
search engine is DiscoWeb [8]. But the best and the newest
one is TEOMA [9]. Response of this search engine for each
query contains three parts: Relevance pages (authority pages),
Refines (some suggestion to refine query) and Resources (hub
pages). Interested readers can refer to [10] for a comparison
between Google [11], Yahoo Search [12], and TEOMA search
engines.

B. Variations of the HITS algorithm

After proposing HITS in 1998, a lot of variations and
improvement on this algorithm have been suggested in the
literature. Most of these researches focus on the use of web
graph adjacency matrix.

In [1], it is proved that if A denote the web graph adjacency
matrix then x and y vectors will converge to the principal
eigenvectors of AT A and AAT respectively. Most of the
improvements suggested on the HITS algorithm in these
researches use this fact as the base. In general these variations
fall into two different categories:

• Modification on the web graph: main concern of these
methods is to deal with cases that we have repeated eigen-
vector for base matrices. Some types of these algorithms
aim at stabilizing HITS (preventing occurring big changes
in eigenvector when we modify adjacency matrix a little).
Solutions for these problems contain: using path instead
of direct link between nodes [13], maintaining user log
record for web pages [13], assigning negative weight
to some edges in order to decrease their effect [14],
creating pseudo hubs and virtual hubs [14], probability
and random traveling between pages [15].

• Modification on computing vectors: these algorithms
work on computing authority and hub vectors and they
emphasize on managing eigenvectors for base matrices.
The techniques that are usually used for this purpose are:
choosing only a special subset of eigenvector space and
work with them [15], using projection of eigenvectors on
the root set [16], and filtering base root [17], [16].

In our implementation, instead of working with adjacency
matrices, we use adjacency lists.

III. IMPLEMENTATION OF THE HITS ALGORITHM

For implementing the HITS algorithm, we used several
tools and frameworks which are introduced in the following
sections.

The WebGraph Framework

Studying web graphs is often difficult due to their large
sizes. The WebGraph framework is a suite of codes, algorithms
and tools that exploits the inner redundancies of the web
to store a web graph in a limited space of memory. This
framework has a simple API that makes it easy to manipulate
large web graphs. It is an open source package and is publicly
available in [18].

Datasets

In our study, we used the datasets that are publicly available
at [19]. These datasets contain data that are gathered by
a number of crawlers and are compressed and encoded by
the WebGraph compression algorithm [2]. Each dataset is
composed of several files. The most important files are:

• A file which contains the compressed graph, and the
relative property file which contains metadata about the
graph.

• A file which contains the transposed version of the graph,
and the relative property file which contains metadata
about the transposed graph.

• An offsets file, which is used for random access to nodes.
• A URLs file, in which the i-th line contains the URL of

the i-th node.
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The following table summarizes the properties of the datasets
that we used during our study:

Crawled domain Crawling year Nodes Links

.uk 2002 18520486 298113762

.eu.int 2005 862664 19235140

.it 2004 41291594 1150725436

The pseudo code of our implementation, which is adapted
from [1], is shown in Fig. 2. As it is shown in this pseudo
code, there are a number of input parameters that effect the
results of the algorithm. These parameters are:

t : The size of the root set.
d : Maximum number of pages that have a link to one

of the pages in the root set and can be added to the
base set. There are many popular pages that have
incoming links from many other pages on the web.
This parameter will prevent the size of the base set
from becoming rapidly large.

k : Number of the iterations that must be done before
sending the result to users. As shown in Fig. 1,
typically 5-10 iterations are sufficient.

By tuning these parameters, we can manage the trade off
between the accuracy of the algorithm and its performance.
That means by choosing larger values for these parameters
we can have more accurate results but the time needed for
doing the computations will be larger.

IV. PARALLELIZING THE HITS ALGORITHM

In summary, the HITS algorithm is composed of these steps:
1) Creating the root set. 2) Creating the base set by expanding
the root set. 3) Performing iterations. The most time consum-
ing part of the algorithm is the third step, i.e. performing the
iterations. It is because that during the execution of this part,
the processor must have random access to huge compressed
graphs which are located in a large portion of the memory, to
find incoming and outgoing links of the base set pages. Having
random access to large portions of the memory decreases the
cache hit rate and therefore execution performance reduces sig-
nificantly. For dealing with this problem, instead of accessing
the huge web graph each time the list of successors of a node is
needed, we find the successors and predecessors of each node
once and save them in two adjacency lists: one for successors
of nodes and the other for predecessors. Although having a
little memory overhead, this technique increases the execution
performance significantly. Using this technique when working
with the crawl of .uk domain, which is a relatively large
graph, the avarage response time decreased from 158.4 to 18.2
milliseconds, i.e. it became approximately 8.7 times faster.

So we modified the HITS algorithm as follows: 1) Create
the root set. 2) Create the base set by expanding the root
set. 3) Create the adjacency lists. 4) Perform iterations by
only accessing the adjacency lists. According to our statistical
analysis, after implementing this modification, only about 10
percent of the execution time of the algorithm is elapsed during

the fourth step. This means that the bottleneck of the algorithm
is now changed from the last step to the first three steps. The
reason is clear: during these steps we need to work with huge
graphs that are spanned along a large portion of the memory.
Parellizing steps one and two does not bring any significant
performance improvments, so we have focused on parallelizing
the third step.

The pseudo code of our algorithm is shown in Fig. 3. In
the next section the proposed architecture for implementing
the algorithm is discussed.

A. Proposed Architecture

The proposed architecture is showed in Fig. 4. The main part
of this architecture is the server component, which receives
user’s query and after calculating the result, sends back it
to him. If only one processing node is available, the server
component must do all the calculations individually. But if
cooperator nodes are available, they can register themselves
on the server and the server delegates some parts of the
calculations to them.

When a cooperator registers itself on the server, a delegate
thread on the server is being started for handling the com-
munication with the cooperator. Each cooperator must have a
copy of the dataset on its hard disk. After the registration of
the cooperators on the server, the server component will order
the cooperator to load the web graph or the transposed version
of it on its memory. In our implementation, cooperators with
even ranks are ordered to load the web graph and cooperators
with odd ranks are ordered to load the transposed version of
it. Because of the huge size of the two graphs, this strategy
(loading one of the graphs instead of loading both of them
on each node) lets us to use cooperators that are not very
resource rich. Therefore even nodes construct AL and odd
nodes construct ALT . Size of these two lists is equal to the
number of pages that are in the base set. In AL, each element
of the list contains two data, the ID of one of the pages which
are in the base set and a pointer to the head of a linked list in
which the IDs of pages that this page has links to (outgoing
links) are saved. On the other hand, in ALT , each element
contains the ID of one of the pages which are in the base set
and a pointer to the head of a linked list in which the IDs of
pages that have links to this page (incoming links) are saved.

On receiving queries from users, the server component
creates the root and base sets individually. The reason for
not doing these steps in parallel is that after implementing
the algorithm we found that because of the communication
overhead, parallelizing these steps not only doesn’t increase
the execution performance, but also decreases it. The server
component then commands each cooperator which part of the
adjacency lists is its responsibility to calculate. Then it does its
share of the calculations and waits for all of the cooperators to
finish their jobs. After finishing its job, each cooperator sends
the result to its corespondent delegate thread, and the thread
will put the result in the server memory.

When all of the cooperators finished their jobs, the server
starts the iterations and after performing them and reaching

106



HITS(q, e, t, d, k, c)
q: a query string
e: a text-based search engine
t, d: natural numbers
R = top t results of e on q.
S = R
For each page p ∈ R

Add to S all of the pages that p points to.
Add to S at most d pages that point to p.

∀i, xi = 1
∀i, yi = 1
For i = 1 to k

Apply operation 1 to (xi−1, yi−1), obtaining new x-weights x′i.
Apply operation 2 to (x′i, yi−1), obtaining new y-weights y′i.
Normalize x′i, obtaining xi.
Normalize y′i, obtaining yi.

Report the pages with the c largest coordinates in xk as authorities.
Report the pages with the c largest coordinates in yk as hubs.

Fig. 2. The HITS Algorithm (adapted from [1])

PHITS(q, e, t, d, k, c)
q: a query string
e: a text-based search engine
t, d: natural numbers
R = top t results of e on q.
S = R
For each page p ∈ R

Add to S all of the pages that p points to.
Add to S at most d pages that point to p.

Create AL, adjacency list of the web graph, in parallel.
// in this list, each page of the base set has a linked list of pages that this page has links to.

Create ALT , adjacency list of the pages which are in the base set, in parallel
// in this list, each page of the base set has a linked list of pages that have links to this page.

∀i, xi = 1
∀i, yi = 1
For i = 1 to k

Apply operation 1 to (xi−1, yi−1), obtaining new x-weights x′i.
// ALT is used for finding pages that have link to each page of the base set.

Apply operation 2 to (x′i, yi−1), obtaining new y-weights y′i.
// AL is used for finding pages that each page in the base set has links to.

Normalize x′i, obtaining xi.
Normalize y′i, obtaining yi.

Report the pages with the c largest coordinates in xk as authorities.
Report the pages with the c largest coordinates in yk as hubs.

Fig. 3. The PHITS (Parallel HITS) Algorithm

to a convergence in the values, it sends the ranked hubs and
authorities back to the user. Because of the separation between
the calculation component of the server and the cooperators,

there must be a way for the server component to detect that
all of the cooperators have finished their jobs. For doing this,
when the calculation for responding to a new query is started,
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Fig. 5. Calculation time of the PHITS algorithm for t=200, d=50, k=20

Fig. 6. Calculation time of the PHITS algorithm for t=500, d=50, k=20

the number of participating cooperators is saved somewhere on
the server memory. Whenever the job of a cooperator finishes,
its corespondent delegate thread decreases this number. It must
also be mentioned that the access to this place of memory is
done at a critical section, which means only one thread at a
time can access this part of the memory. Now for detecting
whether all of the cooperators have done their jobs, the server
component can check in a loop whether the number is reached
to zero or not.

In figures 5 to 7, the result of running our implementation
on crawl of .uk domain, which contains 18520486 nodes, is
shown. In this study we used a Pentium IV 2.4 GHz with
1GB of RAM as our main server and several Pentium IV 2.4
GHz with 512 MB of RAM as cooperators. The hub which
was used for connecting these nodes was a 1Gbps hub. The
followings can be deduced from these figures:

1) The calculation time decreases when new cooperators
are used to do the calculations. But using more than
four nodes for doing calculations on this dataset doesn’t
improve the calculation time significantly and is not cost

Fig. 7. Calculation time of the PHITS algorithm for t=500, d=50, k=10

effective. Current Google index contains more than 8G
pages, which is approximately 440 times bigger than .uk
data set that we used. It is clear that when working with
the complete web graph, which has more than 8G pages,
using more nodes is cost effective and the speed up will
be better.

2) As can be seen in figures 6 and 7, decreasing the number
of iterations from 20 to 10, doesn’t affect the calculation
time significantly. This shows that the main bottleneck
of the algorithm is in creating the adjacency lists and
not in performing the iterations.

V. CONCLUSIONS AND FUTURE WORK

In this paper we used parallel processing methods for
improving the efficiency of accessing compressed web graphs.
After a brief introduction to the HITS algorithm, we used
some techniques to improve its performance in the serial
implementations. Then we proposed an architecture for par-
allelizing this algorithm. In the last section we discussed the
results of the execution of our parallel algorithm on a sample
dataset and showed the improvement gain when parallelizing
the algorithm.

In our proposed architecture, if one of the cooperators fail
or have a long latency in sending results to the server, the
total calculation will be failed or slowed significantly. For
dealing with this problem, in our future work, we intend to
add replicas to the architecture so that when a cooperator fails
or have a long response latency, one of its replicas does its
job. In fact instead of calculating each part of the adjacency
lists with one cooperator, several replicated cooperators can
do the calculations in parallel and the one which finishes first,
will send the result to the corresponding delegate thread in the
server.

Although we used adjacency lists to compute x and y
vectors, as discussed in the literature, these vectors can be
calculated by finding the eigenvectors of the AAT and AT A
matrices. It is intended to implement this method too and
compare the results to the method discussed in the paper.
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Fig. 4. An Architecture for Implementing the PHITS Algorithm
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Multimedia 
 

Chair: Jianping Pan, University of Victoria, British Columbia, Canada 
 
TPC Members: 
Mostafa Bassiouni 
Nihan Cicekli 
Le Gruenwald 
Sumi Helal 
Ryoichi Kawahara 
JongWon Kim 
Peter Langendoerfer 
Mahnhoon Lee 
S. Masoud Sadjadi 
Andreas Meissner 

Emad Mohamed 
Jianping Pan 
Richard Rabbat 
Mona Rizvi 
Tamer Shanableh 
Agma Traina 
Chi Zhang 
Honggang Zhang 

 

 
 
 



Networking and Wireless Technology 
 

Chair: Surong Zeng, Motorola, USA 
 
TPC Members: 
Ozgur B. Akan 
Najib Badache 
Abdelfettah Belghuith 
Jalel Ben-Othman 
Xiaodong Cai 
Periklis Chatzimisios 
Feihong Chen 
Gang Cheng 
Karim Djouani 
Guangbin Fan 
Meimei Gao 
Nan Guo 
Bin He 
Jiongkuan Hou 
Zhigang Jing 
Jalal Y Kawash 
Chengzhou Li 
Qun Li 

Wei Lou 
Wenjing Lou 
Haiyun Luo 
Wenchao Ma 
Daniela Maniezzo 
Sebnem Ozer 
Antonio Pescapè 
Bo Sun 
Mizhou Tan 
Ying Tang 
Haobo Wang 
Sheng Xu 
Jie Yang 
Xi Yang 
Jian Ye 
Jun Yin 
Zheng Zhang 

 
 
 

Security and Information Assurance 
 

 Chair: Marco Marchetti, SMU, USA 
 
TPC Members: 

Piyush Agarwal 
Bill Bolick 
Ebru Celikel 
Eric Cole 
Taz Daughtrey 
Hesham El-Sayed 
Stacey Elliott 
Satoshi Fushimi 
Mike Harper 
Rhonda Henning 
John Hopkinson 
Brad Jensen 
Khaled Mahmud 
F. Marco Marchetti 
Gerald M. Masson 
Tommy Morris 
Padmaraj Nair 
Suku Nair 

Saeed Abu Nimeh 
Michael Panczenko 
Krish Pillai 
Eddy Smith 
Dalia Soliman 
Mayank Trivedi 
Philip Tucker 
Peter Wells  

 



 
Software Engineering and Applications 

 
  
Chair: 
 Kamel Barkaoui, CNAM/CEDRIC, France 
  
TPC members: 
Hassane Alla 
Ali Abdallah 
Gul Agha 
Mehmet Aksit 
Rahma Ben Ayed 
Mohamed Bettaz 
Manfred Broy 
Dalila Chaidmi 
Christine Choppy 
José-Manuel Colom 
Jean Michel Couvreur 
Narayan Debnath 
Jorg Desel 
Khalil Drira 
Khaled El-Fakih 
Amal El Fallah Seghrouchni 
Jean-Marc Farinone 
Serge Haddad 
Mohamed Jmaïel 

Guy Juanole 
Fabrice Kordon 
Nashat Mansour 
Ali Mili 
Fatma Mili 
Roland Mittermeir 
Mohamed Mosbah 
Ahmed Nacer 
Elisabeth Pelz 
Stacy Prowell 
Mike Reed 
Riadh Robbana 
Zaïdi Sahnoun 
Toufik Taibi 
Jim Woodcock 
Dmitry Zaitsev  

 

 
VLSI Circuits, Systems Applications and Signal Processing 

  
Chair: 
Mohamed A. Imam, Dubai Silicon Oasis, UAE  
TPC Members: 
Hasan Al-Nashash 
Mahmoud Al-Qutayri 
Rami Al-Zanoon 
Ali Assi 
Karen Bartleson 
Mohamed Khalil Bin Hani 
Adnan Harb 
Deuk Heo 

Kahtan Mezher 
Jihad Mohaidat 
Novat Nintunze 
Mohammed Osman 
Ashraf Osman 
Assim Sagahyroon 
Bassel Soudan 

Adeel Sultan 
Osama il Yassin 
 
 
 
 
 

 



WORKSHOPS 
 

International Workshop on Databases for Mobile Communications 
System 

 
Co-chairs: 
Shakil Akhtar, UAE University, UAE 
Mudasser F. Wyne, University of Michigan-Flint, USA 
 
 

Workshop on Ad hoc and sensor networks 
 
Co-Chairs: 
Walaa Hamouda, Concordia University, Montreal, Canada 
Amr Youssef, Concordia University, Montreal, Canada 
 
 

International Workshop on Pervasive Computing Systems & 
Application 

 
Co-chairs: 
Sheikh Iqbal Ahamed, Marquette University, USA 
Mohammad Zulkernine, Queens University, Kingston, Canada 
 
 TPC Members: 
Umesh Bellur, IIT Bombay, India 
Anwar Haque, Bell Canada 
Gour Karmakar, Monash University, Australia 
Mujtaba Khambatti, Microsoft Corporation, USA 
Gopi Kolli, Intel Corporation, USA 
Kiran Mudiam, Motorola Corporation, USA 
Nanjangud C Narendra, IBM Corporation , India 
Miroslav Velev, Reservoir Labs, USA 
Wang Yu, Auburn University, USA 

 
The 5th International Workshop on Software Stability: Methodologies, 

Applications and Tools 
 
Co-chairs: 
Mohamed E. Fayad, San José State University, USA 
Imran A. Zualkernan, American University of Sharjah, UAE 
Haitham S. Hamza, University of Nebraska-Lincoln, USA 
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