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Abstract—In this paper we propose a new method to re-
cover bandlimited signals corrupted by impulsive noise. The
proposed method successively uses adaptive thresholding and
soft-decisioning to find the locations and amplitudes of the
impulses. In our proposed method, after estimating the positions
and amplitudes of the additive impulsive noise, an adaptive
algorithm followed by soft-decision is employed to detect and
attenuate the impulses. In the next step, by using an iterative
method, an approximation of the signal is obtained. This signal
approximation is used successively to improve the noise estimate.
The algorithm is analyzed and verified by computer simula-
tions. Simulation results confirm the robustness of the proposed
algorithm even if the impulsive noise exceeds the theoretical
reconstruction capacity.

Index Terms—Impulse noise, adaptive systems, error correc-
tion, recursive estimation, soft decision.

I. INTRODUCTION

IMPULSIVE noise is a common phenomenon occurring inchannels which suffer from switching, manual interrup-
tions, ignition noise, and lightning. Examples of these channels
include power line channels [1], Digital Subscriber Line(DSL)
systems [2], and digital TV (DVB-T) [3]. Urban and indoor
wireless channels as well as underwater acoustic channels
also suffer from impulsive noise [4], [5], [6]. In addition to
telecommunication channels, sensors used in instrumentations
introduce undesired signals such as artifacts and speckles
to the measurements [7]. In images, “salt” and “pepper”
noise is the most well-known version of the impulsive noise
[8]. A Standard Median (SM) filter, is usually preferred for
reducing the salt and pepper noise in these 2-D signals [9]. In
general, nonlinear methods have shown better performance in
reconstruction of signals with impulsive noise [10].
An SM filter manipulates all the samples of the signal,

which can cause distortion in other “clean” samples. To
address this problem, decision-based algorithms are adopted,
in which recovery of corrupted samples is performed after
an impulsive noise detection step. One choice to detect the
impulses is using hard-decision. As an example, in [11] a
hard-decision method based on ordered statistics is used to
determine wether a sample is noisy or not. Another choice
for detecting impulsive noise is using soft-decision and fuzzy
methods [12], [13], [14], [15], [16]. The method in [16], called
NASM (Noise Adaptive Soft-switching Method), utilizes both
global and local statistics of image pixels. Depending on these
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statistics, the estimator switches between Fuzzy Weighted
Median (FWM) and SM filters.
Due to impulsive noise, several samples of the signal are

lost. The correction of the signal consists of both finding the
positions of impulsive noises and estimating the original signal
amplitude from the other clean samples. When the location
of the impulses (corrupted samples) are known, the problem
becomes the same as the erasure channel which is extensively
studied in [17], [18] under the subject of interpolation of
missing samples. In [19], the more complicated problem of
impulsive noise, where error locations are not known, is
studied using DFT codes. In fact, the recovery of a bandlimited
signal corrupted by impulsive noise is equivalent to decoding
error correcting codes when the Galois field is extended to
real and complex numbers. To clarify the concept, it should
be mentioned that the zero coefficients in the Discrete Fourier
Transform (DFT) of real/complex signals play the same role
as the parity symbols in the Galois field codes; adding zero
coefficients in the DFT domain (sampled frequency domain)
is interpreted as oversampling in the time domain [20], [21].
Furthermore, it is also shown that replacement of the DFT
with the Discrete Cosine Transform (DCT) would yield similar
results [22]. A classical method to locate the position of errors
is to compute the Error Locator Polynomial (ELP) and then
search for the roots. To show the strength of our method, we
compare our results with the ones achieved by this method. In
addition to impulsive noise, real/complex signals also contain
additive Gaussian noise; thus, sensitivity of the reconstruction
methods to this type of noise should also be considered [23].
It is known that iterative methods outperform other techniques
when additive Gaussian noise is included [18].
In this paper, we focus on removing additive impulsive noise

from a lowpass signal. Since high-pass frequencies (DFT coef-
ficients) of the original signal are zero, respective frequencies
of the available signal (original signal combined with noise)
are only due to noise. Hence, we can restate our problem as: by
having high frequency content of an impulsive noise, we wish
to remove it. We employ an iterative method where the initial
detection of the impulsive noise locations is performed using
an adaptive thresholding technique similar to the one used in
a radar’s Constant False Alarm Rate (CFAR) [24] detector.
We refer to the process of finding the impulsive locations as
detection. The result of CFAR thresholding is used to make
a soft-decision on whether the sample is corrupted or not.
Subsequently, these information are used in the interpolation
of the signal amplitudes using an iterative method (referred
as signal estimation). The latter estimate is in turn used to
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Fig. 1. The Recursive Detection-Estimation (RDE) method.

improve the detection process while the output of the improved
detection is again fed to the estimation block. As this detection
and estimation loop continues, we get better approximates of
the signal.
The rest of this paper is organized as follows: In section II

the proposed method is introduced. The detection and estima-
tion blocks are discussed in sections III and IV, respectively,
while in section V the system is analyzed mathematically.
In sections VI and VII alternative methods are presented
and compared. Computer simulation results are discussed in
section VIII. Finally, section IX concludes the paper.

II. THE PROPOSED METHOD

In this paper, we focus on removing additive impulsive noise
(e[i]) using the zeros in the DFT domain. To be specific, we
define impulsive noise as an n-point discrete signal where
except for m samples (m < n), the rest are zero. Any
Probability Distribution Function (PDF) can be assumed for
the values of the m nonzero samples; however, we assume
Gaussian distribution for ease of analysis. Furthermore, the lo-
cations of these m nonzero samples are taken to be uniformly
distributed among all the n samples. In some applications,
instead of uniform-Gaussian distribution, other models such
as the Bernoulli-Weibull [25] and Middleton’s Class-A noise
model [26] are employed.
We assume that the original signal (s[i]) is real, which

implies that its DFT is conjugate symmetric. Since for the
reconstruction of each impulsive noise we need two pieces
of information (location and amplitude), we require at least
two independent equations which could be obtained by one
zero in the DFT domain; each zero describes two linear
equations between time domain samples, one regarding the
real part and one for the imaginary part. However, due to
the mentioned symmetry, each zero DFT coefficient in the
positive frequencies is coupled with a zero in the negative
frequencies which do not yield new equations. Thus, the “Error
Correction Capacity” of a given block (maximum number of
corrupted samples we should be able to reconstruct) can be
defined as half the number of its zeros in the DFT domain;

i.e., if the signal contains nz zeros in the DFT domain the
error correction capacity is nz/2. In this paper error correction
capacity and reconstruction capacity are used interchangeably.
The terms full capacity and half capacity indicate the scenarios
where the number of samples corrupted by impulsive noise is
equal to or half the reconstruction capacity, respectively.
Figure 1 depicts the block diagram of our proposed method.

As this figure suggests, the detection of impulse locations and
estimation of signal amplitudes are used successively in a loop;
this method is called Recursive Detection-Estimation (RDE).
To distinguish between the two different iterative methods
used in this paper, we use the term “RDE step” for each time
the detection-estimation loop proceeds (which should not be
confused with iterations of the iterative method shown in Fig.
1). In each RDE step, the noise estimate (ê) is improved using
the approximated signal (ŝ) resulted from the previous RDE
step by subtracting the estimated signal (ŝ) from the noisy
one:

ênew[i] = r[i] − ŝ[i] (1)

The detection block functions as follows: If the amplitudes
of impulsive noise are large enough, corrupted samples could
be distinguished from the neighboring samples; thus, each
detection is based on the difference of the sample and the
average of its neighbors. This method is similar to the CFAR
algorithm used in radar detectors. Hence, the detection block
yields an adaptive threshold (η) using the impulsive noise
estimate. As an example, the following equation describes the
threshold obtained by the simple CFAR algorithm (not used
in our method):

ηsimple[i] =
1

2nc

( nc∑

j=1

∣∣ênew[i − j]
∣∣ +

nc∑

j=1

∣∣ênew[i + j]
∣∣) (2)

Based on the resultant threshold, η, we can decide upon
noisiness of a sample either by hard-decision or by soft-
decision. In the hard-decision, a sample is regarded as noisy
when its amplitude is greater than the threshold and vice
versa. Alternatively, in our soft decision scheme, instead of
two possible labels “noisy” and “clean”, we attenuate each



sample with respect to its distance from the threshold (|ê−η|)
which is in fact a measure of our certainty about its noisiness.
As the difference between a sample and the adaptive threshold
increases, the attenuating factor decreases to zero, which
implies that the sample is likely to be noisy; we denote
the vector of the attenuating factors by mask (φ) and the
attenuation factor of each sample is called the respective mask
coefficient (φ[i]):

masked noisy signal = φ[i] × r[i], 1 ≤ i ≤ n (3)

In each RDE step, as the accuracy of the impulsive noise
estimate improves, we obtain a new mask. Computer sim-
ulations confirm that in initial RDE steps, the soft-decision
method leads to better outputs than the hard-decision method.
As the number of RDE steps increase, better estimates of the
impulsive noise is obtained. This makes it possible to shift the
soft-decision threshold to the hard one (using a parameter of
φ called α), which in turn makes the mask more accurate.
After detecting the impulsive noise locations, the amplitude

of the corrupted sample is estimated. The estimation is based
on interpolation of the amplitude using the surrounding clean
samples. Multiplying the noisy signal by the mask and filtering
the result is a simple method to approximate the original
signal. Although this simple method is likely to alleviate
the noise effect, it certainly distorts other clean samples. To
compensate for the distortion, we use an iterative method
(shown as “iterative method” in Fig. 1) inside the estimator
in each RDE step. To clarify the roles of RDE loop and the
iterative method, it should be emphasized that the RDE steps
improve the detection of corrupted samples (locations) while
the iterative method enhances the estimation of original signal
amplitudes. The algorithm of the proposed method can be
summarized as follows:
1) Approximate the impulsive noise (ê) by subtracting the
estimated signal from the noisy one (1); in the first RDE
step, since no estimate about the signal is available,
signal is assumed to be zero.

2) Generate thresholds, η, using CML-CFAR discussed in
section III-A.

3) Generate a mask, φ, using the soft-decision detector
(with parameter α) discussed in section III-B.

4) Use the mask in conjunction with the iterative method
introduced in section IV to improve the estimate of the
signal.

5) Return to the first step. In the soft-decision function of
step 3, increase parameter α to shift the soft-decision
function to the hard one. Increase the number of itera-
tions in step 4 to further improve the signal estimation.

In the next two sections, details of the detection and
estimation blocks are discussed.

III. IMPULSIVE NOISE DETECTION
As previously described, we introduce a multiplicative mask

in order to suppress the impulses, while trying to keep the
clean samples unchanged. Since we only have an estimate
of the impulse locations, two types of errors are likely to
happen. A missed detection occurs if a corrupted sample is not
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Fig. 2. A typical CFAR detector and decision block.

detected, while a false alarm occurs if a legitimate sample is
detected as noise. Two important techniques are incorporated
to alleviate these effects: 1- The use of CFAR and 2- the
employment of soft-decision. We explain these techniques in
the following subsections.

A. Adaptive Impulsive Noise Detection Using CFAR
The threshold which is used to detect impulsive noise can ei-

ther be adaptive or non-adaptive. In the non-adaptive method, a
fixed threshold is used to compare the amplitude of the sample
under scrutiny to determine whether an impulse at that instant
exists or not. This threshold is obtained using the statistical
properties of the signal and noise. On the other hand, the more
sophisticated thresholding schemes incorporate the amplitude
of the adjacent samples in order to obtain adaptive thresholds.
The CFAR algorithm is an example of an adaptive thresholding
method used in radar detectors based on Neyman-Pearson
criterion [27]. In radar applications, the detector detects the
target in the presence of noise and clutter, which is equivalent
to the detection of impulsive noise locations among other clean
samples. Thus the techniques used in radar detectors can be
adopted for the problem at hand. Figure 2 depicts a simple
CFAR detector. The CFAR processing block may be either
amplitude averaging (Cell Averaging-CFAR)as suggested in
(2) or a more complicated combination of adjacent samples.
In this paper we use a Censored Mean Level (CML) CFAR.
In the kth order CML-CFAR of length 2nc, among the 2nc

adjacent cells, k of the smallest amplitudes are averaged and
the other 2(nc − k) samples (which may contain impulses)
are ignored. In other words, if

∣∣ê[j1]
∣∣ ≤ · · · ≤

∣∣ê[j2nc ]
∣∣ where

{j1, · · · , j2nc} = {i − nc, · · · , i + nc}/{i}, we have:

η[i] =
1
k

k∑

l=1

∣∣ê[jl]
∣∣ (4)

The reason we use CML-CFAR is to reduce the probability
that impulses contribute in the averaging when some of them
are present in adjacent cells.

B. Soft-decision Vs. Hard-decision
The detection stage is not an error-free process in the early

RDE steps, especially when the amplitudes of the impulses
are small compared to the signal amplitudes. When the hard-
decision method is employed, the mask is either zero or one
at each sample; thus some samples are erased. The optimistic
point of view is that only the noisy samples are lost; however,
if we have mistakenly discarded a number of clean samples



(resulting in false alarms), this error may or may not be recov-
erable depending on the number of impulses with respect to the
number of zeros in the DFT domain. On the other hand, when
we use soft-decision, even when the detector makes a number
of false alarms, the attenuation can be compensated without
any need to extra zeros in the DFT domain. The disadvantage
of the “soft” method is the low convergence rate in the signal
estimation block even when good estimates of the impulsive
noise locations are available. To overcome this drawback, we
gradually change the soft-decision to the hard threshold as
the number of RDE steps (estimation fidelity of the noise
locations) increases. To summarize, using hard-decision within
the detection block, a binary mask is generated; i.e, the value
of the mask at each sample is zero if the sample is detected as
noisy and one otherwise. On the other hand, the soft-decision
block generates a real number between zero and one depending
on the certainty of the detector.
Simulation results suggest that the mask function of the

form
φ
(
ê[i], η[i]

)
= e−α

∣∣ê[i]−η[i]
∣∣

(5)

performs well, where ê is the estimated error, η is the threshold
generated by CFAR [28] and α is the softness order of the
detection block. The suggested φ(ê, η) approaches one as ê−η
tends to zero. The parameter α is increased gradually through
RDE steps in order to change the soft-decision to the hard-
decision which in turn increases the convergence rate of the
estimator.

IV. SIGNAL ESTIMATION
In the rest of this paper, we assume the original signal, s[i],

is discrete and lowpass with nz zeros in the DFT domain.
Thus, ideally we should be able to detect and reconstruct n z/2
corrupted samples. Mathematically, we should solve an under-
determined system of equations [29] with some additional
constraints (number of impulses do not exceed nz/2 and each
impulse corrupts only one sample). Let r[i] = s[i]+e[i], where
r[i] is the noisy signal, s[i] is the original signal and e[i] is
the impulsive noise. We have

[
R1
R2

]
=

[
S1

0

]
+

[
E1

E2

]
=

[
S1 + E1

E2

]
(6)

where the capital letters denote the respective signals in the
DFT domain. R1, S1 and E1 are the lowpass components of
the R, S and E signals, respectively, while R2 and E2 are the
highpass parts (the highpass component of S is zero.). E and
e are related to each other by the DFT matrix(∆) as

E = ∆n×n · e (7)

where

∆ =

⎛

⎜⎜⎜⎝

1 1 1 . . . 1
1 e−j 2π

n e−j 2π
n 2 . . . e−j 2π

n (n−1)

...
...

...
. . .

...
1 e−j 2π

n (n−1) e−j 2π
n 2(n−1) . . . e−j 2π

n (n−1)2

⎞

⎟⎟⎟⎠

(8)
To reconstruct the signal, we should solve the under-

determined system of equations

E2 = ∆nz×n · e (9)

where ∆nz×n contains the nz rows of ∆ which are zero in
S. In subsection IV-A we introduce a general iterative method
to synthesize the inverse of a system. As mentioned in section
II, these iterations are performed in the estimation block to
approximate the original signal (in each RDE step) and should
not be confused with RDE (external) loop.

A. Successive Signal Approximations Using an Iterative
Method
The iterative method introduced in [18] is a general ap-

proach to approximate the inverse of a class of invertible
operators in a finite number of iterations. Furthermore, for
a wider class of invertible and linear non-invertible operators,
convergence of this method to the pseudo-inverse solution has
been shown [30]. The invertible operator can be non-linear
and/or time varying.
We denote the operator that we intend to find its inverse by

G. Also, y = G · x means that y is the output of the operator
when x is the input. The purpose of the iterative method is to
estimate x when y and G are known; i.e., approximatingG−1.
Using the operator algebra and denoting the identity operator
by I , we have:

G−1 =
λ

I − (I − λG)
= λ

∞∑

i=0

(I − λG)i (10)

The assumption of ∥I−λG∥ < 1 is necessary for convergence,
where ∥ · ∥ is the ℓ2 norm. Thus,

x = λ
∞∑

i=0

(I − λG)i · y (11)

The output of each iteration step is equivalent to truncating
the above series. The output of the (k + 1)th iteration is

x(k+1) = λ
k+1∑

i=0

(I − λG)i · y

= λy + (I − λG) · λ
k∑

i=0

(I − λG)i · y (12)

Since y = G · x, (12) can be written recursively:

x(k+1) = x(k) + λG ·
(
x − x(k)

)
(13)

In the following, we refer to (13) as the iterative method. It
is obvious that the condition ∥I − λG∥ < 1 is met only for
a specific range of λ (this range is normally 0 ≤ λ < 2);
moreover, decreasing ∥I − λG∥ by increasing λ will result
in a faster convergence rate. Hence, λ determines whether
the method converges and if it does, how fast it converges.
The block diagram of (13) is shown in Fig.3 (a). For our
special case in this paper, we briefly present the proof of the
convergence for a linear contraction operator G (∥G∥ < 1).
In order to show this, assume

z(k) = x − x(k) (14)
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Fig. 3. (a) Block diagram of the iterative method with λ = 1 (b) Model of
the distortion block (G) in our specific application.

thus

z(k+1) = x − x(k+1) = z(k) − λ
(
G · (x − x(k))

)
(15)

or
z(k+1) = D · z(k) (16)

where D = I − λG. For 0 < λ < 2, using the contraction
property of G we have ∥D∥ < 1 and therefore z (k+1) → 0,
which results in x(k) → x.
Below, we apply the iterative method introduced above

to estimate the amplitude of the corrupted samples using
the mask generated by the detection block as part of the
G operator. The detection block introduced in section III,
generates a mask vector which contains information about the
locations of the impulsive noise. By employing the mask, the
iterative method described by (13) can be used to recover the
corrupted samples. The distortion operator applied for these
iterations is depicted in Fig. 3 (b). In addition to the mask, a
lowpass filter is employed which helps the reconstruction of
the corrupted samples. Both the mask and the lowpass filter
are linear contraction operators; consequently, the depicted
distortion block is also a linear contraction which validates
the convergence to the solution (section IV-A). In the early
RDE steps, since the outputs of the detection block are not
reliable, a small number of iterations are used. In contrast,
when better approximations of the signal are obtained (at
higher RDE steps), the increase in the number of iterations
yields in better performance.
In the next section, a mathematical analysis of the proposed

method is discussed.

V. ANALYSIS OF THE PROPOSED METHOD

In this section, the effect of the iterative method on both the
signal and the impulsive noise is investigated. Since G in our
application is linear, its operation can be modeled in general
by multiplication of a matrix G:

G = ∆−1 · diag(1, . . . , 1︸ ︷︷ ︸
n−nz

, 0, . . . , 0︸ ︷︷ ︸
nz

) · ∆ ·M (17)

where M is a diagonal matrix with the values of the mask
on its main diagonal and ∆ is the DFT coefficients matrix

introduced in (8). Also by diag(·), we mean a diagonal matrix
with diagonal elements as given inside the parenthesis.
This matrix multiplication for the signal and impulsive noise

can be separately considered. First, the behavior of the signal
through the iterations is examined. By using (14), (13) can be
written as

z(k+1) = (I − λG)z(k) (18)

The spectrum of the signal, after multiplying by the mask,
spreads over the frequency; hence, by the use of a lowpass
filter, we moderately improve the distorted signal as the
original signal is assumed to be lowpass. However, Amini in
[30], [31] has shown that for matrices in the same form as
G, the iterative method converges even without the lowpass
filtering. Consequently, the role of the filter can be viewed
as an accelerating tool. Thus, in order to obtain a crude
approximation of the convergence rate, we ignore the lowpass
filter. Hence, (18) can be rewritten as

z(k+1) = (I − λM)z(k) (19)
= (I − λM)k+1z(0) (20)

Since all the elements of I − λM are between zero and one,
z(k) → 0 as k → ∞.
Let mi be the ith element of the main diagonal of M.

After l iterations, the ith element of the (I − λM)l is (1 −
λmi)l = el. ln(1−λmi); thus, the ith element on the diagonal
decays exponentially as l increases with the time constant
1
τi

= ln( 1
1−λmi

). To have a single time constant, we use the
following average:

1
τav

= E

{∑

i

1
τi

}
(21)

where τav is the average time constant and E{·} denotes the
expected value operator.
To continue our analysis, we focus on the mask values.

Using exponential soft-decision method, we have:

mi = e−α|r[i]−ŝ[i]| =

⎧
⎨

⎩

e−α|s[i]+e[i]−ŝ[i]| r[i] is noisy

e−α|s[i]−ŝ[i]| otherwise
(22)

where ŝ is the estimate of s and e represents the impulsive
noise amplitude. In order to calculate τav, the Probability
Distribution Function (PDF) of s − ŝ and s − ŝ + e should
be calculated. We assume that the input signal has zero-mean
Gaussian distribution. Since the estimation that we use are
linear, s[i] − ŝ[i] has also zero-mean Gaussian distribution
with the variance of σ2

est. With a similar assumption about
the noise distribution (zero-mean Gaussian with variance σ 2

e )
and independence of the noise and the signal, s − ŝ + e also
has zero-mean Gaussian distribution with variance σ 2

n. By the
numerical calculation of τav in the simulations, we have found
out that the best linear fit with respect to the minimum mean
squared error criterion is:

τav = 5.43 + 15α
(
p σn + (1 − p)σest

)
(23)



where p is the probability that a sample contains an impulsive
noise. Now we can write the following approximation:

z(l) =
(
I− λM

)l

︸ ︷︷ ︸
≈ e−l/τav ·I

.z(0)

⇒ ∥z(l)∥ ≈ e−
l

τav ∥z(0)∥ (24)

In other words, excluding the impulsive noise, the improve-
ment of the signal in each iteration can be approximated by
20τ−1

av log(e) dB.
Now we consider the effect of the iterations on the noisy

part. We decompose the noise into lowpass and highpass parts
as follows:

eLP =
(
∆−1 · diag(1, . . . , 1︸ ︷︷ ︸

n−nz

, 0, . . . , 0︸ ︷︷ ︸
nz

) ·∆
)
· e

eHP =
(
∆−1 · diag(0, . . . , 0︸ ︷︷ ︸

n−nz

, 1, . . . , 1︸ ︷︷ ︸
nz

) ·∆
)
· e (25)

It is clear that e = eLP + eHP . Since the nonzero frequency
components of eLP coincide with the original low pass signal,
the iterative method cannot distinguish these two signals. In
other words, if the soft-decision method with large number of
iterations is used, eLP will be a dominant additive part. On
the other, due to the use of the lowpass filter, eHP vanishes.
Hence, at the end of ∞ iterations, we will have an additive
noise part with variance:

E{∥eLP∥2} = E{eH
LP · eLP}

= E{eH · ∆−1 · diag(1, . . . , 1︸ ︷︷ ︸
n−nz

, 0, . . . , 0︸ ︷︷ ︸
nz

) ·∆ · e}

= Tr
{
E{e · eH} ·∆−1 · diag(1, . . . , 1, 0, . . . , 0) ·∆

}

= p · σ2
e · Tr{∆−1 · diag(1, . . . , 1, 0, . . . , 0) ·∆}

= (n − nz)pσ2
e (26)

Thus the impulsive noise power after∞ iterations is expected
to decrease by −10 log(1 − nz

n ) dB (since the average noise
power before the iteration is npσ2

e ). It should be emphasized
that if hard-decision is used (at higher RDE steps), the above
equations are not valid and noise analysis should be performed
by checking the error probability of the location detector.
Another issue which is also important is that the above
equations are comparing the noise before and at the end of∞
iterations. In fact, the power of the noise after the first iteration
is lower than the power of the noise after the last iteration;
however, the quality of the signal is remarkably improved
after the last iteration. Therefore, we expect to get a net gain
in the signal to impulsive noise ratio after a finite number
of iterations. Empirically, each iteration improves the signal
component more than the degradation due to the impulsive
noise reconstruction.
We finish this section by investigating the effect of the mask

on the noisy part. Since the noise is impulsive, only the value
of the mask at the locations of the impulses are important. For
an impulse at the ith sample, the value of the mask is equal
to e−α

∣∣s[i]+e[i]−ŝ[i]
∣∣
. Thus the amplitude of this impulse after

multiplication by the mask is

ẽ[i] = e[i].e−α
∣∣s[i]+e[i]−ŝ[i]

∣∣
(27)

We have previously assumed that both noise and s[i]− ŝ[i]
are Gaussian distributed random variables with zero mean and
variances σ2

e and σ2
est, respectively. Thus:

E{ẽ2[i]} =

∫ ∞

−∞

∫ ∞

−∞
n2 · e−2|x+n| e

− x2

2σ2
est · e

− n2
2σ2

e

2πσeσest
dx · dn

<

∫ ∞

−∞

∫ ∞

−∞
n2 · e2|x|−2|n| e

− x2

2σ2
est · e

− n2

2σ2
e

2πσeσest
dx · dn

=

∫ ∞

−∞
n2 · e−2|n| e

− n2
2σ2

e
√

2πσe

· dn

×
∫ ∞

−∞
e2|x| e

− x2

2σ2
est

√
2πσest

· dx

= σ2
e

(
e2σ2

e Q(2σe)
(
8σ2

e + 2
)
− 4σe√

2π

)

×
(

2e2σ2
estQ(−2σ2

est)

)

≈ σ2
e

(
e2σ2

e Q(2σe)
(
8σ2

e + 2
)
− 4σe√

2π

)
e2σ2

est

< 0.41σ2
e · e2σ2

est (28)

where

Q(x) =
∫ ∞

x

e−
y2
2

√
2π

· dy (29)

Hence, when a good estimator is present (σest < 2
3 ), the

variance of the masked noise falls below the variance of the
noise before the mask:

E{ẽ2[i]} < σ2
e (30)

Furthermore, by lowpass filtering the masked output, this
power is decreased again by discarding the high frequency
components. To summarize, we have shown that the SNR of
the reconstructed signal is at least:

SNRmin =
Nσ2

s

(n − nz)pσ2
e

(31)

where σs is the standard deviation of the signal.

VI. AN ALTERNATIVE METHOD TO DETECT IMPULSIVE
NOISE LOCATIONS

In [32], a decoding technique for DFT-based error control
codes, using ELP is devised. In this section we combine the
ELP decoding with the proposed iterative method. Let us
assume that the original signal

(
s[i]

)
is an n-point discrete

signal with nz contiguous zeros in the DFT domain. Thus,
from the coding point of view, we are using an (n, n−n z)-code
which has the ability to correct up to t = nz

2 random errors.
We denote the impulsive noise and the corrupted signals by
e[i] and r[i], respectively. The impulsive noise, e[i], is assumed
to be non-zero at most at nz

2 samples. The corrupted signal
and the impulsive noise are related to each other by:

r[i] = s[i] + e[i] (32)
R[k] = S[k] + E[k] (33)



where the capital letters denote the DFT domain. Assume that

S[k] = 0 for k0 ≤ k ≤ k0 + 2t − 1 (34)

When ne ≤ t errors are present in the received block, the
error locator polynomial is defined as

H(Ω) =
ne∏

k=1

(
Ω − exp

(
j
2π

n
ik

))
(35)

=
t∑

k=0

hk · Ωk (36)

where {ik}ne
k=1 are the location of errors and hk = 0 for ne <

k ≤ t and hne = 1. In fact the roots of this polynomial are
exponentially related to the location of errors; i.e., H(Ωk) = 0
for Ωk = exp

(
j 2π

n ik
)
:

H(Ωk) = htΩt
k + ht−1Ωt−1

k + . . . + h0 = 0 (37)

Using the above equalities for 1 ≤ k ≤ ne, we can write:

0 =
ne∑

k=1

H(Ωk) · e(ik) · exp
(
− j

2π · r
n

ik
)

(38)

= htE[r − t] + ht−1E[r + 1 − t] + . . . + h0E[r]

The good point is that E[k] = R[k] for k0 ≤ k ≤ k0 +
2t − 1, and therefore the value of E[k]s are known in this
range. If we set k0 + t ≤ r ≤ k0 + 2t− 1 in (38), we obtain a
system of t equations with t + 1 unknowns (hk coefficients).
These equations yield a unique solution for the polynomial
with the additional condition that the last nonzero hk is equal
to one. Instead of matrix inversion, a more efficient method is
the Berlekamp-Massey algorithm for solving these equations.
Finding the coefficients, we have to search for the roots. Since
the roots of H(Ω) are of the form exp

(
j 2π

n ik
)
, the inverse

DFT (IDFT) of the {hk}t
k=0 can be used. Before performing

IDFT, we have to pad n−1−t zeros at the end of the {hk}t
k=0

sequence to obtain an n-point signal. We refer to the new
signal (after IDFT) as {Hk}n−1

k=0 . Each zero in {Hk} represents
an error in r[k] at the same location.
As we are using the above method in the field of real

numbers, exact zeros of {Hk}s are rarely observed. Conse-
quently, we threshold the |Hk|s to find the zeros. Alternatively,
|Hk|s can be used as a mask for soft-decision; in this case,
thresholding is not needed.

VII. HARD-DECISION AND FILTERING

The simplest method to eliminate the impulsive noise, is
to hard-limit the noisy signal and then apply a lowpass filter
to the output of the hard-limiter. This method does not use
the redundancy in the signal efficiently; nevertheless, it can
be viewed as a crude reconstruction algorithm. To have the
best performance, we optimize the threshold for the hard-
limiter. Let us assume that the amplitudes of the signal and
the impulsive noise have the PDF’s N(0, σ2

s) and N(0, σ2
e),

respectively. Moreover, p denotes the probability that a sample
is noisy and η represents the threshold for hard-limiting. The
probability of error is

Pe = (1 − p) e
−η2

2σ2
s + p

(
1 − e

−η2

2(σ2
s+σ2

e)
)

(39)
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Fig. 4. Multiple Detection-Estimation steps using hard-decision and simple
detector.

Then, the optimum threshold (to minimize Pe) can be derived
by differentiating Pe with respect to the threshold level:

∂

∂η
Pe = 0 (40)

hence,

ηopt = σs

√

2(1 + SNR) · ln
(

1 − p

p
· 1 + SNR

SNR

)
(41)

where SNR = σ2
e/σ2

s . In order to have an optimum threshold,
p should satisfy the following equation

p ≤ 1 + SNR

1 + 2SNR
(42)

VIII. SIMULATION RESULTS

To prove the effectiveness of the proposed method, various
simulations are conducted. In all simulations, the signal is a
filtered white Gaussian pseudo-random signal. We have also
tested signals with uniform distribution which yielded similar
results.
Fig. 4 show the simulation results when the process of hard-

limiting and lowpass filtering is repeated. For the number of
impulses, we considered both full capacity (half the number
of DFT zeros of the signal) and half capacity (one fourth the
number of DFT zeros of the signal). It is observed that in case
of full capacity, the improvement after 10 RDE steps is below
10dB.
As previously predicted, the soft thresholding method ex-

plained in section III, with repetition of detection and estima-
tion processes, as shown in Fig. 5, yields much better results
for full capacity (maximum number of impulses that can be
corrected). For finding the mask function, both the simple soft
method and CFAR are used. Fig. 5 suggests that by adding
CFAR to the soft-decision, the recovery is enhanced. When
we use CFAR, we require fewer number of iterations in the
amplitude estimation steps of the impulsive noise; thus, CFAR
adds little computational overhead on the overall complexity
of the algorithm.
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The α parameter in the soft-decision method and the number
of iterations in the estimator of the proposed method are varied
from one RDE step to another as shown in Table I. These
numbers are derived empirically and are not claimed to be
optimal. As it is observed, the α parameter is non-decreasing,
thus the decision rule is gradually changed from soft to a
hard-decision as RDE steps proceed. Incidentally, the number
of iterations in the estimator increases as the signal estimate
becomes more reliable at higher steps. The CFAR parameters,
nc and k where chosen 20 and 15. In the iterative method,
parameter λ is set to one.
If the number of impulses exceeds the reconstruction capac-

ity, the SNR of the reconstructed signal is degraded gracefully
since the iterative method leads to the pseudo-inverse solution
[30], [31]. Fig. 6 depicts the SNR of the reconstructed signal
when number of the errors introduced by the impulsive channel
is 15%more than the theoretical reconstruction capacity. It can
be seen that the SNR degrades gracefully compared to that of
Fig. 5 but the algorithm does not diverge.
We have also simulated the ELP method in section VI

to detect error locations and estimated the signal using 500
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Fig. 7. SNR of the denoised signal using ELP to generate mask.

iterations. With the use of the Chebychev acceleration method
[33], we can reduce this number to one third. For hard-decision
ELP method, we have generated the mask by thresholding
|Hk| which has yielded a binary mask. The threshold is set to
a small number to determine the locations of zeros. for |Hk|s
smaller than the threshold, an error is assumed at that location.
For soft-decision ELP method, we use |Hk| as the mask. The
performance of these methods are depicted in Fig. 7.
These methods do not perform as well as the previous

method at the full capacity; however, it performs better for
low error rates.
In Table II, we compare the relative complexity (computer

time) and achievable SNR’s for various methods at different
impulsive noise rates. We have used thresholding in conjunc-
tion with lowpass filtering as the most simple reconstruction
method (with complexity 1), and the complexity of other
methods are compared to this simple method. As another
simple method, median filtering is also used for comparison.
This table shows clearly that at full capacity the soft-decision
with the iterative technique gives the best performance in terms
of SNR; the performance of ELP is less than half in SNR with
10 times more in complexity. However, at half the capacity,
ELP performs very well.
We have initially assumed that each impulse corrupts only

one sample of the signal. However, due to the characteris-
tics of noise source, it is possible that consecutive impulses
(burst error) occur. By increasing the number of consecutive
impulses, the condition number of the matrix G (introduced
in section V) also increases and consequently the convergence
rate decreases. For matrices with poor condition number,
additive white noise or finite numerical precision may lead
to divergence. In our simulations, we can recover bursts of
size 4.
If prior to the transmission of the signal, characteristics of

the noise source (channel) are known, interleaving in time
or frequency (Sorted DFT [34]) can improve the robustness
of the method in case of bursty impulses. The ELP method
introduced in section VI could also be used to find the errors
using Sorted DFT.



TABLE I
SOFT-DECISION PARAMETER AND NUMBER OF ITERATIONS

RDE step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
α 4 6 10 10 14 20 20 25 30 40 50 60 70 70 100

No. of Iterations 50 50 50 50 100 100 100 100 100 100 200 200 200 200 200

TABLE II
RELATIVE COMPLEXITY OF THE METHODS AND THE RESULTING SNR

Method SNR(dB) at SNR(dB) at SNR(dB) at Complexity
full capacity 15% overloaded 70% capacity

Thresholding and LPF 7 6.8 10 1
Median Filter 18 13.5 20 1000

Non-Adaptive Hard-dec. 13 9.5 19 500
CFAR Soft-dec 42 35.1 50 5000

ELP 20 2 250 50000

IX. CONCLUSION
In this paper, we proposed a new method for impulsive

noise cancellation. In this method, with use of recursive
detection/estimation steps, we approach the theoretical upper
bound of reconstruction capacity. The SNR of the recon-
structed signal can be improved by increasing the number
of detection/estimation steps and increasing the number of
iterations in each estimation block. Soft-decision and adaptive
thresholding (CFAR) are used in the detection procedure
which enhances the performance. Simulation results show that
the SNR of the reconstructed signal degrades gradually if
the number of impulses exceeds the theoretical reconstruction
capacity. We have also used the ELP method in conjunction
with the iterative method to estimate the corrupted samples of
the signal. The SNR performance of the ELP method is higher
than the RDE method for low error rates but much worse at
full capacity, with a complexity that is higher by an order of
magnitude.
The ideas used in this paper can also be used to other real

field error correcting codes (DCT, wavelet and random codes),
Sparse Component Analysis (SCA), and OFDM clipping noise
removal.
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