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Abstract—In contrast to the vast amount of literature in
random matrices in the field of compressed sensing, the subject of
deterministic matrix design is at its early stages. Since these deter-
ministic matrices are usually constructed using the polynomials
in finite Galois fields, the number of rows (number of samples)
is restricted to some specific integers such as prime powers. In
this paper, besides extending a previous matrix design based on
the binary BCH codes to the p-ary codes, we introduce matrices
with wide variety of options for the number of rows. Simulation
results demonstrate that these matrices perform almost as well
as random matrices.

Index Terms—Compressed Sensing, p-ary BCH codes, Coher-
ences.

I. INTRODUCTION
The technique of compression while sampling, usually re-

ferred to as Compressed Sensing, has been the center of atten-
tion for at least half a decade [1]–[3]. In fact, the compressibil-
ity of the discrete data associated with an analog signal such
as speech and image indicates that the sampling procedure
is not as efficient as possible; i.e., instead of compressing the
data after the sampling procedure, there should be a method to
combine these two tasks (sampling and compression) in order
to somehow decrease the rate.
In the field of discrete compressed sensing, we are interested

in reconstructing a k-sparse n×1 source vector, namely xn×1,
from its linear projections onto an m-dimensional subspace
(m ≪ n) which constitute an m × 1 measurement vector
(ym×1). The measurement process is theoretically assumed to
be linear in the form of ym×1 = Φm×nxn×1, where Φm×n is
called the sensing matrix. Moreover, the vector x is assumed
to be k-sparse which means that x has a sparse representation
in a (known) unitary domain, namely, xn×1 = Ψn×nsn×1

where s has at most k nonzero elements and Ψ is a unitary
matrix. In this paper, we assume that Ψ is the identity matrix
or equivalently, we are considering Φ instead of ΦΨ.
The two main problems in the discrete compressed sensing

are the sampling and reconstruction tasks. The sampling part
consists of designing a proper sensing matrix Φm×n with
small enough m (number of samples) that preserves the main
information conveyed by the original signal. The common
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solution is to use a random matrix of i.i.d. elements with m ≥
O(k log n) (we hereafter refer to this inequality as the bound in
the random theory); the Gaussian distribution is probably the
first studied case [1], however, a large class of distributions are
investigated in [4]. The reconstruction challenge is to recover
the original vector from an under-determined system of linear
equations (m equations vs. n unknowns) with the additional
sparsity constraint. This problem has a longer research history
as it also appears in the source separation problems. Although
the mentioned problem is intractable in general [5], under
certain conditions, it is shown that ℓ1 minimization (basis
pursuit) can yield the desired result [2], [5]. Also the greedy
algorithms such as matching pursuit and its variants, due
to their reasonable computational complexity, are among the
well-known techniques in this field [6].
Although a realization of a random sensing matrix, with

high probability provides the possibility of perfect recovery
for all k-sparse vectors with small enough value of k, there is
currently no polynomial-time algorithm to verify this property
for a given matrix. The main benefit of deterministic designs
is that stable recovery of sparse vectors can be guaranteed
without any probabilistic arguments. Among other advantages
of the deterministic designs is the storage issue; to store a
realization of a random matrix, all the elements should be
kept in the memory and the process should be repeated each
time a new realization is generated, while in deterministic
designs, because of the special structure of the matrix, only
a few parameters should be stored. Furthermore, deterministic
matrices are likely (eg. the matrices introduced in this paper)
to provide simplicity in both sampling and reconstruction
processes.
One of the main tools for investigating the suitability of a

given matrix as a sensing operator is the so called Restricted
Isometry Property (RIP) introduced in [2]: the matrix Φm×n

is said to satisfy the RIP of order k with constant 0 ≤ δk < 1
if for every k-sparse vector s, the following inequalities hold:

∀sn×1 : k-sparse 1 − δk ≤
∥Φs∥2

ℓ2

∥s∥2
ℓ2

≤ 1 + δk. (1)

It should be mentioned that RIP is only a necessary condition
that guarantees recovery; there are examples where RIP-less
guarantees support special type of sensing matrices [7]–[10].
The coherence of a matrix defined as

µA ! max
i̸=j

|⟨ai,aj⟩|
∥ai∥ · ∥aj∥

, (2)

where ai,aj are different columns of A, is one of the main
tools for establishing the RIP in deterministic matrices. In
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plain words, matrices with normalized columns are guaranteed
to satisfy an RIP order when the coherence is small [11], [12].
There is a well-known lower bound on the coherence of an
m × n (m < n) matrix A known as Welch bound [13]:

µA ≥
√

n

m(n − m)
. (3)

The above lower bound implies an upper bound on the
provable RIP order of a matrix through coherence arguments.
Unfortunately, this upper bound is proportional to

√
m while

for the random matrices, the upper bound scales like m; i.e.,
there is inherently a gap between the RIP orders that are
guaranteed for deterministic designs and the ones predicted
by the random matrices.
In [11], using the coherence arguments, DeVore has pro-

posed p2×pr+1 binary matrices with coherence r
p
that satisfy

the RIP of order k when kr < p. Exploiting the hash functions
and extractor graphs, another class of binary matrices with
m = k2O(log log n)E (m × n matrix with RIP of order k)
has been introduced in [14]; here E is a constant larger
than 1 which is involved in the construction of the extractor
graphs (the best known guarantee is E = 2). In addition to
the extractor graphs, expander graphs are also shown to be
useful for sensing purposes [7], [15]. The authors in [16] have
established a connection between Compressed Sensing (CS)
and coding theory, specifically the second order Reed-Muller
codes and have proposed a category of bipolar 2l × 2

l(l+1)
2

deterministic sensing matrices; however, no lower bound on
the RIP order of these matrices is proved. Some m × m2

complex-valued matrices have been investigated in [17] by
taking advantage of chirp functions; although there is no
guarantee for the RIP order of these matrices, in [18], a
relaxed version of the RIP known as Statistical RIP (StRIP1), is
shown to hold. In fact, a more general class of StRIP matrices
are introduced in [18]: it is shown that if 1) the rows of a
matrix Am×n are orthogonal and all the row sums are zero,
2) the columns of the matrix form a group under point-wise
multiplication, and 3) the absolute value of the column sums
except the all-one column, are upper bounded by m1−0.5η

for η > 0.5, then the inequalities in (1) hold with high
probability over all k-sparse vectors for the matrix 1√

m
A when

k < 1+ (n− 1)η and m ≥
(

c
δ2 k log n

) 1
η for some constant c.

In [12], using coherence arguments and based on BCH
codes, we have recently introduced (2l − 1) × 2O

(

2(l−j) ln j
j

)

bipolar matrices with µ ≤ 2l−j−1
2l−1 . Although, the use of BCH

codes in compressed sensing and dimensionality reduction has
been already investigated (e.g., [18], [19]), the approach and
results in [12] which are generalized in this paper, are different
in that, there is no randomness involved, neither in the matrix
nor in the type of recovery guarantees.
Unlike the Devore’s matrices for which the coherence is

lower bounded by Johnson’s bound (see [20] or [12] for the
explanation of the bound) rather than the Welch bound, the

1In the case of StRIP, for a given and fixed matrix, the inequalities in
(1) hold with high probability if the support of the k-sparse vector is drawn
uniformly at random from all the

(n
k

)

possible ways and the non-zero elements
follow an independent and identical Gaussian distribution.

TABLE I
DETAILS OF THE CONSTRUCTEDm × n MATRICES IN THIS PAPER. µub

DENOTES THE PROVEN UPPER BOUND ON THE COHERENCE WHILE kgr IS
THE SPARSITY ORDER UP TO WHICH THE PERFECT RECONSTRUCTION IS

GUARANTEED.

m pl − 1

n pO
(

p
(l−r)

logp r

r
)

µub
p

2(p−1)
pl−r−1

pl−1

kgr

⌊
p−1

p
pl−1

pl−r−1
+ 0.5

⌋

elements e
j 2π

p
a

√
m

for a ∈ {0, 1, . . . , p − 1}

constraints 1 < l ∈ N, 1 ≤ r ≤ l − 1 and p prime

Inequality form m ≤ O
(

kgr

(

logp n
)

logp kgr
logp logp kgr

)

coherence of the BCH-based matrices in [12] is relatively close
to the Welch bound. However, the number of rows (m) in these
matrices are restricted to the forms 2l − 1 (there are more
options in Devore’s design). In this paper, we generalize the
utilization of the binary BCH codes to the use of p-ary codes
(where p is a prime integer) and obtain m×n complex-valued
sensing matrices; the details of these matrices are shown in
Table I (the matrices in [12] are special cases when p = 2).
This generalization, not only increases the possible options
for m, but also results in matrices with a coherence closer
to the Welch bound as p increases. We further broaden the
achievable range of options by introducing two techniques
for combining matrices with small coherence. The first is the
Kronecker product which is of special interest for changing the
number of rows. In the second method, we combine a binary
matrix with fixed column weight and another matrix with fixed
absolute value of the elements. This technique increases the
number of columns in the binary matrix without increasing
the number of rows or the coherence.
The rest of the paper is organized as follows: in Sec.

II we explain how block codes, specially p-ary codes, can
form sensing matrices with small coherence. Here we briefly
review the concepts of the binary design in [12] and highlight
the challenges for generalizing to p-ary codes. Section III
describes a p-ary code design suitable for generating sensing
matrices. The method is completely deterministic (no search
is required) and is based on the generalized BCH codes. Due
to the use of p-ary BCH codes, the number of rows in these
matrices are restricted to the form pl − 1 for some integer l;
in Sec. IV, we show that by using the Kronecker product of
these matrices, we can achieve matrices with more options on
the number of rows. Other than the Kronecker product, we
present a technique for combining binary and p-ary matrices
which increases the number of columns without changing the
number of rows. The simulation results in Sec. V confirm that
the BCH-based matrices perform almost similar to the random
matrices; here we consider different scenarios including real
images. Finally, Sec. VI concludes the paper.

II. COMPLEX MATRICES VIA p-ARY LINEAR CODES
In this section, we explain how block codes, specially p-

ary codes, can form sensing matrices with small coherence.
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Since the approach is based on the one used for bipolar
matrices introduced in [12], we briefly discuss the binary
design concepts.
Assume that we are given a (ñ, k̃) linear binary code2 with

the minimum distance d̃min such that the all-one vector (1ñ×1)
is a valid codeword; due to the linearity of the code, all-zero
vector (0ñ×1) is always a codeword. Now for all pairs of code
vectors such as añ×1,bñ×1 with cñ×1 ! a ⊕ b (⊕ denotes
the bitwise XOR operation), one of the following statements
is true:
1) cñ×1 = 0ñ×1 or 1ñ×1.
2) cñ×1 ̸= 0ñ×1 and cñ×1 ̸= 1ñ×1, therefore:

{

d(cñ×1,0ñ×1) ≥ d̃min

d(cñ×1,1ñ×1) ≥ d̃min
, (4)

which means that cñ×1 contains at least d̃min and at most
ñ − d̃min number of ones. In other words, a and b differ at
least in d̃min and at most in ñ − d̃min bits.
For a given codeword a, the first case happens only when

b = a or a ⊕ 1ñ×1; thus, all the possible 2k̃ codewords
can be paired (a with a ⊕ 1ñ×1) into 2k̃−1 sets such that
only the second case happens for two vectors from different
sets. Now assume that we form a matrix by selecting exactly
one vector from each set and putting them as the columns,
and then converting all the zeros in the matrix into −1
(Añ×2k̃−1 ). The columns of A consist solely of ±1 and each
two columns differ by at least d̃min and at most ñ − d̃min

elements. Consequently, the absolute value of the inner product
of each two distinct columns is upper bounded by ñ− 2d̃min.
Hence, the coherence of the matrix A when the columns
are normalized by the factor 1√

ñ
(all the columns have the

same norm and thus, normalization is equivalent to scaling),
is upper bounded by ñ−2d̃min

ñ
. Recalling a result from [6],

[12], we know that it is possible to perfectly recover a k-
sparse vector from noiseless measurements obtained by a
sensing matrix with a coherence less than 1

2k−1 . Thus, the
mentioned matrix A is guaranteed to recover k-sparse vectors
for k ≤ ñ

2(ñ−2d̃min)
+ 0.5.

To generalize the above results to p-ary codes, there are
two difficulties: 1) the definition of d̃min in p-ary codes just
reveals the number of unequal locations in two codewords and
unlike the binary case, does not give useful information about
the differences and 2) to have a matrix with low inner product
among its columns, we need a transformation on the elements
such as replacement of the zeros by −1 in the binary case. To
solve the latter, we introduce complex matrices by converting
the code elements into points on the unit circle in the complex
plane while for the first challenge, instead of pairing the code
vectors, we have to define larger sets.
Let C(ñ, k̃; p) be a linear p-ary code over GF (p) where p is

a power of a prime integer with the minimum distance d̃min

such that 1ñ×1 is a valid code vector. Due to the linearity

2In this paper, in order to avoid confusion between the common parameters
in the CS field and coding theory, the associated parameters with the coding
field have been marked by the tilde sign; e.g., ñ represents the block length
in the coding theory while n denotes the number of elements in the source
vector.

of the code, all the vectors 0ñ×1,1ñ×1, . . . , (p− 1)ñ×1 are
also codewords. Similar to the binary case, for each two code
vectors añ×1 and bñ×1 with cñ×1 ! a ⊕ −b, one of the
following statements holds3:
1) c = 0ñ×1 or 1ñ×1 or . . . or (p − 1)ñ×1,
2) c /∈ {0ñ×1,1ñ×1, . . . , (p − 1)ñ×1}; therefore

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

d(cñ×1,0ñ×1) ≥ d̃min

d(cñ×1,1ñ×1) ≥ d̃min

...
d(cñ×1, (p− 1)ñ×1) ≥ d̃min

, (5)

which means that cñ×1 contains at most ñ− d̃min from each
of {0, 1, . . . , p − 1}. Let Ni (0 ≤ i ≤ p − 1) represent the
number of occurrences of the element i in the vector cñ×1.
The inequalities Ni ≤ ñ − d̃min together with

∑p−1
i=0 Ni = ñ

result in:

Ni = ñ −
∑

j ̸=i

Nj ≥ ñ − (p − 1)(ñ − d̃min). (6)

Hence

ñ − (p − 1)(ñ − d̃min)
︸ ︷︷ ︸

Nmin

≤ Ni ≤ ñ − d̃min
︸ ︷︷ ︸

Nmax

, (7)

which is equivalent to
∣
∣Ni −

Nmin + Nmax

2

∣
∣ ≤

Nmax − Nmin

2
. (8)

Similarly, we divide the set of code vectors into subsets of
the form {a,a⊕1ñ×1, . . . ,a⊕ (p− 1)ñ×1} and pick exactly
one vector from each subset. In fact, we are looking for the
representatives of the elements of the quotient group formed
by dividing the group of all code vectors4 by its subgroup
{0ñ×1, . . . , (p− 1)ñ×1}. The following theorem summarizes
the main results.
Theorem 1: Let C(ñ, k̃; p) be a linear p-ary code over

GF (p) for a prime power p with the minimum distance d̃min

such that 1ñ×1 is a valid codeword and let Ãñ×pk̃−1 be the
matrix generated by selecting exactly one vector from each
set of {a,a ⊕ 1ñ×1, . . . ,a ⊕ (p − 1)ñ×1}. If we construct
Añ×pk̃−1 from Ã according to the following rule:

Ã = [ãαβ]α,β ⇒ A =
1√
ñ

[

ej 2π
p ãαβ

]

α,β
, (9)

the coherence will be upper bounded by p(p−1)ñ−p2d̃min

2ñ
.

Proof. First note that the columns of A all have unit norm:

∥aβ∥ =

∥
∥
∥
∥

1√
ñ

[ej 2π
p ã1,β . . . ej 2π

p ãñ,β ]T
∥
∥
∥
∥

= 1. (10)

Let aα,aβ be two different columns of A and let ãα, ãβ

be the corresponding columns in Ã with c = ãα ⊕ −ãβ . In

3For p-ary codes, ⊕ is the mod p addition (element-wise).
4Algebraic group with respect to the operation ⊕.
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addition, assume that the element i (0 ≤ i ≤ p−1) is repeated
Ni times in c. For the inner product of aα and aβ we have:

|⟨aα,aβ⟩| = |aH
β · aα| =

1

ñ

∣
∣

ñ
∑

i=1

ej 2π
p (ãi,α−ãi,β)

∣
∣

=

∣
∣
∑ñ

i=1 ej 2π
p ci

∣
∣

ñ
=

∣
∣
∑p−1

i=0 Nie
j 2π

p i
∣
∣

ñ
.(11)

Since ej 2π
p is the root of 1 + x + · · ·+ xp−1, for all values

of γ we have:

∣
∣

p−1
∑

i=0

Nie
j 2π

p i
∣
∣ =

∣
∣

p−1
∑

i=0

(Ni − γ)ej 2π
p i

∣
∣ ≤

p−1
∑

i=0

|Ni − γ|, (12)

where we used the triangle inequality for the last part. Recall-
ing inequalities (7) and (8) and by setting γ = Nmin+Nmax

2 ,
we get:

∣
∣

p−1
∑

i=0

Nie
j 2π

p i
∣
∣ ≤ p

Nmax − Nmin

2

=
p(p − 1)ñ − p2d̃min

2
, (13)

which demonstrates the following upper bound on the coher-
ence of A:

|⟨aα,aβ⟩| ≤
p(p − 1)ñ − p2d̃min

2ñ
. (14)

"

Remark 1: The best choice of γ in (12) which yields the
least upper bound for the inner product is the median of the
Ni’s, not necessarily the mean value used in (13); however, the
median is not a fixed value and thus, no deterministic upper
bound will be derived.

Remark 2: To guarantee µA < 1
2k−1 (a sufficient condition

for perfect recovery of k-sparse signals [6], [12]) by using the
upper bound in Theorem 1, we should have:

d̃min

ñ
>

p − 1

p
−

2

p2(2k − 1)
≥

p − 1

p
(1 −

4

kp2
). (15)

Hence, d̃min should be close to p−1
p ñ; i.e., for large values of

p, d̃min is almost the same as ñ. This implies that in order to
increase the sparsity order k, we need to increase d̃min. The
existence and design of such matrices from p-ary codes will
be shown in the next section.

III. p-ARY CODE DESIGN
Due to the existence of a lower bound on the minimum

distance of the BCH codes, we focus on the generalized p-ary
BCH codes with large minimum distances. The BCH codes are
a subclass of linear cyclic codes (sums and circular shifts of the
code-words are also valid code-words) where the elements of
the code vectors are taken from a finite field, namely GF (p)
(p is the field size and should be a prime power), and the
length of the code-words are ñ = pm̃ − 1 for some integer
m̃. Instead of the vector representation, BCH code-words are
usually regarded as polynomials of degree ñ−1 over the Galois
field (elements in the vector are considered as the polynomial

coefficients). In this way, a p-ary ñ×1 vector is a valid code-
word if its corresponding polynomial is divisible by a fixed
polynomial g(x) ∈ GFP [x] referred to as the code generating
polynomial. In order to have the cyclic property in the code,
it is necessary and sufficient that g(x) is a divisor of xñ − 1
[21]. Recalling a result from the Galois theory, we know [21]:

∏

r∈GF (pm̃)
r ̸=0

(x − r) = xpm̃−1 − 1. (16)

Thus, g(x), which is a divisor of xpm̃−1 − 1, should be equal
to the product of a subset of (x − r)’s for r ∈ GF (pm̃); i.e.,
g(x) can be decomposed into linear factors in this field. This
feature is helpful in designing the polynomial by determining
its roots.
Let α be a primitive root of GF (pm̃); hence, all the nonzero

elements of the field can be written in the form αl, where l
is a nonnegative integer number. An important result in BCH
codes is that if {αi1 , . . . , αid} is a subset of the roots of g(x)
such that i1, . . . , id form an arithmetic progression, we have
d̃min ≥ d + 1 [21]; if the vector [c1, . . . , cñ]T is a nonzero
codeword, we should have g(x)|

∑ñ
j=1 cjxj−1 and therefore5:

⎡

⎢
⎢
⎢
⎣

α0×i1 α1×i1 . . . α(ñ−1)×i1

α0×i2 α1×i2 . . . α(ñ−1)×i2

...
...

. . .
...

α0×id α1×id . . . α(ñ−1)×id

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Hd×ñ

⎡

⎢
⎢
⎢
⎣

c1

c2
...
cñ

⎤

⎥
⎥
⎥
⎦

= 0d×1. (17)

Since {i1, . . . , id} form an arithmetic progression, each d ×
d sub-matrix of H is a Vandermonde matrix; thus, each d
selection of the columns are linearly independent which means
that at least d+1 elements in [c1, . . . , cñ]T should be nonzero
(the lower bound on the minimum distance).
In our code design approach, we choose g(x) such that the

set {αpm̃−1+ pl
−1

p−1 +1, αpm̃−1+ pl
−1

p−1 +2, . . . , αpm̃−2} is a subset
of its roots for an integer l < m̃. Hence, there exists at least
an arithmetic progression of length pm̃ − pm̃−1 − pl−1

p−1 − 2
among the powers of α in the roots of g(x). Consequently,
we have

d̃min ≥ pm̃ − pm̃−1 −
pl − 1

p − 1
− 1

= (pm̃ − 1)

(

1 −
pm̃−1

pm̃ − 1
−

pl − 1

(pm̃ − 1)(p − 1)

)

= ñ

(
p − 1

p
−

pl+1 − 1

p(p − 1)(pm̃ − 1)

)

⇒
d̃min

ñ
≥

p − 1

p

(

1 −
pl+1 − 1

(p − 1)2(pm̃ − 1)

)

. (18)

To find such a generating polynomial, we construct a
polynomial h(x) ∈ GFp[x] (parity check polynomial) without
any repeated root such that the roots of h(x) form a subset of
T = {α0, α1, . . . , αpm̃−1+ pl

−1
p−1 }. Now g(x) ! xpm̃

−1−1
h(x) satis-

fies all the above requirements for the generating polynomial.

5 x|y implies y is divisible by x.
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Except for the trivial cases, the polynomial
∏|T |−1

i=0 (x − αi)
does not belong to GFp[x], which shows that the set of the
roots is often a strict subset of T . The following lemma is a
helpful tool for identifying the roots of h(x).
Lemma 1: Let H(m̃,l)

seq be the set of all binary sequences of
length m̃ such that each two 1’s are circularly spaced by at
least m̃− l− 1 zeros in between. Furthermore, let H(l)

m̃ be the
set of all decimal numbers for which the base-p representation
coincides with a sequence in H(m̃,l)

seq . Now, we have:
⎧

⎪
⎨

⎪
⎩

H(l)
m̃ ⊆ {0, 1, . . . , pm̃−1 + pl−1

p−1 }

∏

i∈H(l)
m̃

(x − αi) ∈ GFp[x]
. (19)

Proof. Let B be an element ofH(m̃,l)
seq with the base-p repre-

sentation as (bm̃−1 . . . b0)p. Since the sequence (bm̃−1, . . . , b0)

is a member of H(m̃,l)
seq , each of the bi’s is either 0 or 1. There

are two cases:
1) bm̃−1 = 0, therefore

(bm̃−1 . . . b0)p ≤ (011 . . .1)p

=
pm̃−1

p − 1
≤ pm̃−1 +

pl − 1

p − 1
, (20)

2) bm̃−1 = 1, therefore, the following m̃ − l − 1 digits
should be zero: bm̃−2 = · · · = bl = 0

(bm̃−1 . . . b0)p ≤ (1 0 . . . 0
︸ ︷︷ ︸

m̃−l−1

1 . . . 1
︸ ︷︷ ︸

l

)p

= pm̃−1 +
pl − 1

p − 1
. (21)

Thus, we have H(l)
m̃ ⊆ {0, 1, . . . , pm̃−1 + pl−1

p−1 }.
In addition, for the same B, we have:

pB = (bm̃−1 . . . b00)p

= bm̃−1p
m̃ + (bm̃−2 . . . b00)p

≡ bm̃−1 + (bm̃−2 . . . b00)p (mod pm̃ − 1)

≡ (bm̃−2 . . . b0bm̃−1)p (mod pm̃ − 1). (22)

According to the circular property of (bm̃−1, . . . , b0), B
′

=
(bm̃−2 . . . b0bm̃−1)p should be also included in H(l)

m̃ , hence

αpB = αB
′

∈ {αh}
h∈H(l)

m̃

,

⇒ {αB, αpB, αp2B , . . . , αpm̃−1B} ⊆ {αh}
h∈H(l)

m̃

.(23)

In fact, the set of {αpiB}i is the set of conjugates of αB with
respect to the field GF (p), therefore

∏

i

(x − αpiB) ∈ GFp[x], (24)

which finally results in
∏

i∈H(l)
m̃

(x − αi) ∈ GFp[x]. "

The above lemma confirms that the following construction
for h(x) fulfills all the required conditions:

h(x) !
∏

h∈H(l)
m̃

(x − αh) ∈ GF (p)[x]. (25)

One of the important conditions to be verified is whether
1ñ×1 belongs to the set of codewords. Since the base-p

representation of 0 satisfies the required conditions of H(m̃,l)
seq ,

1 = α0 is one of the roots of h(x) which implies that
gcd

(

g(x), x−1
)

= 1. Due to the definition of g(x), we know
⎧

⎨

⎩

g(x)
∣
∣xñ − 1 = (x − 1)(1 + x + · · · + xñ−1)

gcd
(

g(x) , x − 1
)

= 1

⇒ g(x)
∣
∣1 + x + · · · + xñ−1, (26)

which confirms that 1ñ×1 is a valid codeword. The other issue
which should be considered is to choose the representatives
from each of the sets {a,a⊕1ñ×1, . . .a⊕(p − 1)ñ×1}. Since
p ! ñ, in each of these sets, the polynomial representation
of exactly one of the codewords is divisible by x − 1.
Hence, if instead of g(x), we use (x − 1)g(x) all the desired
conditions are fulfilled. In addition, by this choice of the code
generating polynomial, the cyclic property of the original code
is preserved which is a useful tool for reducing the complexity
of the reconstruction method [12]. Also, the additional factor
of x − 1 increases the lower bound on the minimum distance
of the code by 1. Table II summarizes the matrix design steps.
To find the final size of the constructed sensing matrix, we

should calculate the value k̃; similar to the discussions in [12],
this value is equal to the size of the set H(l)

m̃ . It is shown in
[12] that |H(l)

m̃ | = O
(

γl+1
)

where γ is the largest root of
xm̃−l−1 − x − 1. Thus, for the m × n constructed sensing
matrix using this code, we have:

⎧

⎪⎨

⎪
⎩

m = pm̃ − 1

logp n = |H(l)
m̃ | = O

(

γl+1
)

kgr ≥ 1
2µA

≥ p−1
p

pm̃−1
pl+1−1 ≈ pm̃−l−1

, (27)

where kgr represents the threshold for the sparsity order of
the sparse vector, up to which we can guarantee the perfect

reconstruction. Using the inequality ln γ ≥ ln
(

m̃−l−1
)

m̃−l−1 (see

[12]) we can show γ
logp kgr

logp logp kgr ≥ p. Therefore, we have:

m ≤ O
(

kgr(logp n)
logp kgr

logp logp kgr

)

. (28)

Obviously, the upper bound for m in the random matrices
(m ≤ O

(

kgr logp n
)

) is much stronger than what we have
proved here; not only is the power of logp n greater than one
in our case, but also it increases as the desired kgr increases. To
the best of our knowledge, no deterministic design is available
yet which by means of RIP guarantees a fixed value c such
that m ≤ O

(

kgr(log n)c
)

. Since, the design principle in our
matrices is coherence, it is logical to compare the resulting
coherence with the Welch bound (3). For this purpose, we
have reported the ratio of the achieved coherence to the Welch
bound (µBCH

µW B
) for some special BCH-based matrices in Table

III. We have used the special case of m̃ = 2l, which results
in (p2l −1)×p3l matrices; in fact, for each p we have H(l)

2l =
{0}∪{pi}2l−1

i=0 ∪{pl+i +pi}l−1
i=0. The results in Table III show

that the achieved coherence tends to the Welch bound as p
increases.

IV. MATRIX RESIZING
In this section, we introduce two methods to change the

size of the previously discussed matrices. In the first method,
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TABLE II
MATRIX DESIGN STEPS

For a given prime power p,
1) Choose the positive integer m̃ and set m = pm̃ − 1.
2) Choose an integer 0 ≤ l ≤ m̃ − 1. The value

p
2(p−1)

pl+1−1
pm̃−1

is an upper bound for the coherence
of the final matrix.

3) Form the set H(m̃,l)
seq by finding all binary sequences

of length m̃ such that each two 1’s are circularly
spaced by at least m̃ − l − 1 zeros. Let H(l)

m̃ be the
decimal numbers for which the base-p representation
is a sequence in H(m̃,l)

seq .
4) Define:

h(x) =
∏

r∈H(l)
m̃

\{0}

(

x − αr
)

,

where α is one of the primitive elements of GF (pm̃).
Also set n = p|H

(l)
m̃

|−1.
5) Put all the code vectors of the code defined by h(x)

and g(x) = xpm̃
−1−1

h(x) as different columns of the
matrix Ãm×n .

6) Define the final matrix as

Am×n =
1

√
m

[

e
j2π

ãi,j
p

]

,

where ãi,j ’s are the elements of the matrix Ã.

TABLE III
µBCH
µW B

FOR VARIOUS BCH-BASED (p2l − 1) × p3l MATRICES.

p = 2 p = 3 p = 5 p = 7

l = 1 — 1.1863 1.1009 1.0709
l = 2 1.1296 1.0549 1.0198 1.0102
l = 3 1.0618 1.0184 1.0040 1.0015

by employing the binary matrices, we increase the number of
columns (n) for fixed values ofm and k; however, this increase
does not change the order of O(k log n). The second method
is to change the number of rows (number of samples) which
provides us with more options on the number of samples. A
summary of these methods is given in Table IV.

A. Mixing with Binary Matrices
The design of binary matrices with small coherence, due

to the non-negative nature of the elements, is a difficult task;
the inner product of two binary vectors consists merely of
non-negative terms which demonstrates the main difficulty
in finding quasi-orthogonal binary vectors in relatively small
dimensions. Hopefully, there are at least two known binary
matrix structures: 1) Devore’s matrices [11] with p2 rows
where p is a prime power and the weight of each column
is p and 2) OOC-based matrices introduced in [12] for which
the number of rows has slightly larger range of options.
Lemma 2: Given a binary matrix Am×n1 whose columns

each have wm nonzero entries with coherence µA, and a
wm×n2 matrix B with coherence µB for which the elements
have the same absolute value, there exists a deterministic
construction for an m × (n1n2) matrix coherence C with
µC ≤ max

(

µA, µB

)

and normalized columns.

TABLE IV
SUMMARY OF THE RESIZING TECHNIQUES.

Kronecker Binary-Mixing
Inputs Ama×na , Bmb×nb

Ama×na , Bmb×nb

Output C(mamb)×(nanb) Cma×(nanb)

Coherence µC ≤ max(µA, µB) µC ≤ max(µA, µB)
A is binary with column-

Constraints — weight mb and elements of B

have similar absolute value.

Fig. 1. The procedure of mixing with a binary matrix: A is a binary matrix
with constant column weight and the elements of B have the same absolute
value.

Proof Here, we explicitly construct C by mixing the two
matrices. To form the lth column of C, we first write l− 1 as
α·n2+β, where α ∈ {0, 1, . . . , n1−1} and β ∈ {0, 1, . . . , n2−
1} (in fact, α and β are the quotient and remainder of l−1 by
n2, respectively). Let i1, . . . , iwm be the indices of the nonzero
locations in the (α + 1)th column of the matrix A. Now the
elements of the lth column in C are:

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

ci1,l = b1,β+1/
(

rB
√

wm

)

ci2,l = b2,β+1/
(

rB
√

wm

)

...
ciwm ,l = bwm,β+1/

(

rB
√

wm

)

cs,l = 0 , s /∈ {i1, . . . , iwm}

, (29)

where [b1,β+1, . . . , bwm,β+1]T is the (β + 1)th column of
B and rB is the absolute value of the elements of B. The
schematic diagram of the above procedure is shown in Fig. 1.
To show the coherence property of C, let um×1 and vm×1

be the lth1 and lth2 columns of C, respectively, where l1 − 1 =
α1 · n2 + β1 and l2 − 1 = α2 · n2 + β2. It is trivial to check
that ∥u∥ = ∥v∥ = 1. To investigate the inner product of the
two vectors, we consider the following two cases:

1) α1 ̸= α2, which means that u,v are generated using
different columns ofA and therefore, they have different
patterns of nonzero elements. Since the inner product
of different columns of the binary matrix A are less
than µA (wmµA prior to column normalization), at most
wmµA of the nonzero elements of u coincide with
that of v. Moreover, the absolute value of the nonzero
elements in both u and v is 1√

wm
(normalized elements
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B=

A=

C=

Fig. 2. Kronecker product of two matrices (C = A ⊗ B).

of B). Consequently, we have:

|⟨u,v⟩| =
∣
∣

n
∑

i=1

uivi

∣
∣

≤
n

∑

i=1

|uivi| = wmµA

(
1

√
wm

)2

= µA, (30)

2) α1 = α2, which means that u,v are generated using the
same column of A and therefore, their inner product is
the same as the inner product of the respective columns
in B (columns β1 + 1 and β2 + 1):

|⟨u,v⟩| =
|⟨bβ1+1,bβ2+1⟩|

r2
B

wm
≤ µB. (31)

Thus, C has normalized columns and its coherence is upper
bounded by max

(

µA, µB

)

. "

Although this technique increases n = n1n2 (dimension)
for the same values of m (number of measurements) and µ
(and consequently, kgr), the order of log n and consequently
log n

m
is not improved:

log n = log n1 + log n2 ⇒
O

(

log n
)

= max
{

O
(

log n1

)

,O
(

log n2

)}

. (32)

B. Kronecker Product
LetAma×na andBmb×nb

be two arbitrary matrices. Define:

Cmamb×nanb
! Ama×na ⊗ Bmb×nb

(33)

where ⊗ denotes the Kronecker product of the two matrices;
i.e.:

cη,θ = aγ,τbρ,ν , (34)

where η = (γ−1)mb +ρ, θ = (τ −1)nb +ν, and γ, τ, ρ, ν are
positive integers not exceeding ma, na, mb, nb, respectively.
Figure 2 shows the schematic diagram of the above Kronecker
product.
Lemma 3: Assume C = A ⊗ B.
(i) If A and B have normalized columns, C has also

normalized columns.
(ii) µC = max

{

µA, µB

}

.
(iii) If both A and B satisfy RIP of order k with constants

δk,A and δk,B, respectively, matrix C also satisfies RIP
of order k with δk,C ≤ δk,Aδk,B + δk,A + δk,B.

The proof of the first two statements can be found in [22],
[23] and for the third, the reader is referred to [24].
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Fig. 3. The reconstruction SNR vs. sparsity order where the noisy compressed
samples have SNR of 15 dB. The matrices are 80 × 729 and the coherence
of the 3-ary BCH-based matrix (p = 3) is 1
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Now the interesting result which can be achieved by the
above operation is the generation of matrices with small
coherence and arbitrary number of rows (number of samples).
The method in [11] generates matrices with only prime power
number of rows; however, using the Kronecker product, we
can obtain matrices with number of rows as any product of
the prime powers which obviously includes all the positive
integers. The disadvantage of this method is the order decrease
of log n

m for a fixed µ or kgr :

log nc

mc
=

log na + log nb

mamb

=
1

mb

log na

ma
+

1

ma

log nb

mb
. (35)

Therefore, even if A and B are random matrices ( log na

ma
and

log nb

mb
are close to a fixed multiple of k−1

gr ), the guaranteed
performance of C is much worst than the random matrices;
e.g., log nc

mc
→ 0 for large size values of A and B, while

for random matrices that guarantee the recovery of kgr-sparse
vectors with the same length, log nrnd

mrnd
is close to a multiple of

k−1
gr .

V. SIMULATION RESULTS

In this section, the performance of our proposed class of
sensing matrices based on the p-ary BCH codes is compared
to the performance of various types of sampling matrices
including those proposed in [17] based on the chirp functions,
random rows of the DFT matrix, and the realizations of
complex-valued Gaussian random matrices.
In order to have a good performance evaluation for our

matrices, we have implemented the matrices for three different
cases of p (in the p-ary BCH codes); namely, p = 3, 5, 7.
Moreover, to have a fair comparison, we have considered the
same size, (p4−1)×p6, for the BCH-based matrices, matrices
formed by random DFT rows, complex random (independent
real and imaginary parts) and chirp-based matrices (80× 729,
624×15625, and 2400×117649 for p = 3, 5, 7, respectively).
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In the simulations, the original k-sparse vector is gener-
ated by first producing a realization of an n × 1 vector of
i.i.d. zero-mean complex-valued Gaussian random elements
(independent real and imaginary parts) with σ = 1 and then
setting n − k of its elements to zero; the location of k non-
zero elements is chosen uniformly at random among all

(
n
k

)

possibilities. The compressed samples are generated by the
mentioned rectangular matrices and then, the samples are sub-
ject to Additive White Gaussian Noise (AWGN) with different
variances; we refer to the sample to noise power ratio as input
SNR. Finally, the original k-sparse vector is reconstructed
from the noisy samples using Orthogonal Matching Pursuit
(OMP); the SNR of the reconstructed signal with respect to
the original vector is referred to as the reconstruction SNR. It
is shown in [6], [12] that the family of Matching Pursuit (MP)
methods will perfectly recover the original k-sparse vector
from the noiseless samples if the coherence of the sampling
matrix is less than 1

2k−1 .
To have smooth curves, the results are averaged over 5000

different runs (500 runs for Fig. 4). It is worth mentioning that
the coherence of the 80×729, 624×15625 and 2400×117649
BCH-based matrices are 1

8 ,
1
24 and

1
48 , respectively.

Figure 3 demonstrates the SNRs for the reconstruction of k-
sparse input signals of size n = 729 where k varies from 1 to
30 and the compressed samples are corrupted by AWGN with
SNR = 15 dB, while Fig. 4 shows similar curves for input
size n = 15625, where the sparsity orders 150 ≤ k ≤ 200
and input SNR = 30 dB are considered. These figures show
that the BCH-based matrices outperform all other designs,
however, the difference between the performance of these
matrices and those formed by random rows of the DFT matrix
is negligible.
Figure 5 presents the reconstruction SNRs of 25-sparse

729×1 input signals where the compressed samples are subject
to varying noise powers resulting in input SNRs ranging from
0 to 100 dB. This figure again confirms that the BCH-based
matrices and those formed by random rows of the DFT matrix
perform almost equally and better than the rest. Moreover, the
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Fig. 5. The reconstruction SNR of a 25-sparse signal from its noisy
compressed samples for various input SNRs. The matrices are 80× 729 and
the coherence of the 3-ary BCH-based matrix (p = 3) is 1

8 .

obtained curves resemble linear trends between the input and
reconstruction SNRs for high enough input SNRs.
In another simulation scenario, we have evaluated the

maximum sparsity order of the input signals for which the
signal can be recovered almost perfectly from the noiseless
compressed measurements. Figures 6 and 7 show the recovery
percentage (SNRreconst ≥ 100 dB) at different input sparsity
orders. The matrices in Fig. 6 are similar to those of Fig. 5
and 3; this figure shows a slight advantage of the BCH-based
matrices to their closest competitor, the matrices formed by
random rows of the DFT matrix. In Fig. 7 we have evaluated
the performance of the matrices formed by mixing techniques
in Sec. IV. As a representative of the binary mixing technique
discussed in Sec. IV-A, we have combined the 64×512 binary
matrix with column weight 8 using Devore’s design (field size
8), and the 8 × 9 complex-valued matrix using ternary BCH
codes; the result is a 64 × 4608 matrix with coherence 0.25.
Also, random matrices (complex-valued random matrix and
random rows of the DFT matrix) of size 64 × 4608 are used
for this figure. Since the number of columns in the chirp-based
matrices can not exceed the square of the number of rows,
the size 64 × 4608 is not realizable in this design; therefore,
we have considered the 75 × 4608 chirp-based matrix with
coherence 1√

3
. For the Kronecker product technique discussed

in Sec. IV-B, we have combined the 9×27 binary matrix with
column weight 3 using Devore’s design (field size 3), and the
7 × 64 bipolar matrix using binary BCH codes; the result is
a 63 × 1728 matrix with coherence 5

7 . Although the binary-
mixed matrix produces almost the same number of compressed
samples for the inputs of 2.5 times larger than the Kronecker-
mixed matrix, its performance which is close to the random
matrices, is completely superior than the Kronecker-mixed
one. Regarding the largest k value for which the recovery
percentage is almost one, this matrix outperforms the chirp-
based one as well.
To justify our claim regarding the fast implementation of

the recovery algorithm when BCH-based matrices are used,
we have compared the required time for recovering the sparse
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Fig. 8. Comparison of the required time for retrieving sparse 15625 × 1
signals utilizing a 5-ary BCH-based matrix, complex-valued random matrices
and random sub-matrices of the DFT matrix all of size 624 × 15625 vs.
sparsity order of the source signal.

25% Sparse Image Rnd DFT, PSNR=59.5

Comp. Rnd, PSNR=53.9 BCH, PSNR=49.4 Chirp, PSNR=48.7

Fig. 9. Comparison of utilizing different sampling matrices in order to
compress a 65 × 65 Lena image with sparsity of 25%. All the employed
matrices are 2400×4225; from the 7-ary 2400×117649 BCH-based matrix
which has the coherence 1

48 , we have kept only the first 4225 columns.

vectors with and without employing the circular characteristic
of the columns in Fig. 8. This circular characteristic enables
us to employ the FFT algorithm (m-point FFT) for finding
the cross correlation of the samples’ vector and the columns
of the sensing matrix; for further details see [12]. Also, sub-
matrices of the DFT matrix, although do not have the circular
property in their columns, are special in that the required
correlations can be found by a single n-point FFT operation. In
Fig. 8, we have utilized the circular property of the BCH-based
matrices and compared the required time for reconstructing the
source signal to the reconstruction time when complex random
matrices and sub-matrices of the DFT matrix are utilized; the
results of this figure are obtained by considering 15625 × 1
original k-sparse vectors for 1 ≤ k ≤ 50. The curves for
the BCH-based matrix and sub-matrices of the DFT matrix
almost coincide while the curve for the simple OMP method
indicates a higher order of computational complexity. These
curves reveal that for k = 45, the FFT-assisted methods are
approximately 16 times faster than the simple one, which is
remarkable.
In our last simulation, we use the Lena image of size 65×65.

The original signal has been made sparse ( k
n = 0.25) using

Haar wavelet coefficients (discarding %75 of the coefficients).
Figure 9 depicts the reconstructed images and their Peak Sig-
nal to Noise Ratios (PSNR) with respect to the sparse image;
in this scenario, random matrices outperform the deterministic
designs while 7-ary BCH-based matrix marginally outperform
the chirp-based matrix.

VI. CONCLUSION
A new design for matrices with small coherence is investi-

gated which results in complex-valued matrices (except for the
special case of p = 2). The design is based on the previously
studied link between coding theory and compressed sensing.
The considered codes are generalized p-ary BCH codes that
provide large minimum distances among the code vectors.
The case of p = 2 (special case of bipolar matrices) was
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previously investigated. Simulation results confirm that the
performance of the new matrices has reached the bounds of
complex random compressed sensing while they outperform
the chirp-type matrices. In addition, we have studied two mix-
ing techniques for combining matrices with small coherence.
More specifically, the Kronecker product is considered as a
tool for generating sensing matrices with desirable number of
rows while the other technique can increase the achievable
number of columns.
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