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Abstract—We consider continuous-time sparse stochastic pro-
cesses from which we have only a finite number of noisy/noiseless
samples. Our goal is to estimate the noiseless samples (denoising)
and the signal in-between (interpolation problem). By relying
on tools from the theory of splines, we derive the joint a
priori distribution of the samples and show how this probability
density function can be factorized. The factorization enables us
to tractably implement the maximum a posteriori and minimum
mean-square error (MMSE) criteria as two statistical approaches
for estimating the unknowns. We compare the derived statistical
methods with well-known techniques for the recovery of sparse
signals, such as the `1 norm and Log (`1-`0 relaxation) regular-
ization methods. The simulation results show that, under certain
conditions, the performance of the regularization techniques can
be very close to that of the MMSE estimator.

Index Terms—Denoising, Interpolation, Lévy Process, MAP,
MMSE, Statistical Learning, Sparse Process.

I. INTRODUCTION

THE recent popularity of regularization techniques in
signal and image processing is motivated by the sparse

nature of real-world data. It has resulted in the development
of powerful tools for many problems such as denoising, de-
convolution, and interpolation. The emergence of compressed
sensing, which focuses on the recovery of sparse vectors from
highly under-sampled sets of measurements, is playing a key
role in this context [1], [2], [3].

Assume that the signal of interest {s[i]}m

i=0

is a finite-length
discrete signal also represented by s as a vector) that has a
sparse or almost sparse representation in some transform or
analysis domain (e.g., wavelet or DCT). Assume moreover
that we only have access to noisy measurements of the form
�

s̃[i] = s[i] + n[i]
 

m

i=0

, where
�

n[i]
 

m

i=0

denotes an additive
white Gaussian noise. Then, we would like to estimate {s[i]}

i

.
The common sparsity-promoting variational techniques rely on
penalizing the sparsity in the transform/analysis domain [4],
[5] by imposing

�

ŝ[i]
 

m

i=0

= arg min

{s[i]}

�

ks � ˜

sk2

`2
+ �J

sparse

(s)

 

, (1)

where s̃ is the vector of noisy measurements, J
sparse

(·) is
a penalty function that reflects the sparsity constraint in the
transform/analysis domain and � is a weight that is usually
set based on the noise and signal powers. The choice of

Manuscript received December 18, 2011; revised July 27, 2012.
The authors are with the Biomedical Imaging Group (BIG), École poly-

technique fédérale de Lausanne (EPFL), Lausanne, Switzerland. Emails:
{arash.amini,ulugbek.kamilov,emrah.bostan,michael.unser}@epfl.ch.

This work was supported by the European Research Center (ERC) under
FUN-SP grant.

J
sparse

(·) = k · k
`1 is one of the favorite ones in compressed

sensing when {s[i]}m

i=0

is itself sparse [6], while the use of
J

sparse

(s) = TV (s), where TV stands for total variation, is a
common choice for piecewise-smooth signals that have sparse
derivatives [7].

Although the estimation problem for a given set of mea-
surements is a deterministic procedure and can be handled
without recourse to statistical tools, there are benefits in
viewing the problem from the stochastic perspective. For
instance, one can take advantage of side information about
the unobserved data to establish probability laws for all or
part of the data. Moreover, a stochastic framework allows
one to evaluate the performance of estimation techniques and
argue about their distance from the optimal estimator. The
conventional stochastic interpretation of the variational method
in (1) leads to the finding that {ŝ[i]}m

i=0

is the maximum a
posteriori (MAP) estimate of {s[i]}m

i=0

. In this interpretation,
the quadratic data term is associated with the Gaussian nature
of the additive noise, while the sparsifying penalty term
corresponds to the a priori distribution of the sparse input.
For example, the penalty J

sparse

(·) = k · k
`1 is associated

with the MAP estimator with Laplace prior [8], [9]. However,
investigations of the compressible/sparse priors have revealed
that the Laplace distribution cannot be considered as a sparse
prior [10], [11], [12]. Recently in [13], it is argued that (1) is
better interpreted as the minimum mean-square error (MMSE)
estimator of a sparse prior.

Though the discrete stochastic models are widely adopted
for sparse signals, they only approximate the continuous nature
of real-world signals. The main challenge for employing
continuous models is to transpose the compressibility/sparsity
concepts in the continuous domain while maintaining com-
patibility with the discrete domain. In [14], an extended class
of piecewise-smooth signals is proposed as a candidate for
continuous stochastic sparse models. This class is closely
related to signals with a finite rate of innovation [15]. Based
on infinitely divisible distributions, a more general stochastic
framework has been recently introduced in [16], [17]. There,
the continuous models include Gaussian processes (such as
Brownian motion), piecewise-polynomial signals, and ↵-stable
processes as special cases. In addition, a large portion of the
introduced family is considered as compressible/sparse with
respect to the definition in [11] which is compatible with the
discrete definition.

In this paper, we investigate the estimation problem for
the samples of the continuous-time sparse models introduced
in [16], [17]. We derive the a priori and a posteriori proba-
bility density functions (pdf) of the noiseless/noisy samples.
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We present a practical factorization of the prior distribution
which enables us to perform statistical learning for denois-
ing or interpolation problems. In particular, we implement
the optimal MMSE estimator based on the message-passing
algorithm. The implementation involves discretization and
convolution of pdfs, and is in general, slower than the common
variational techniques. We further compare the performance
of the Bayesian and variational denoising methods. Among
the variational methods, we consider quadratic, TV, and Log
regularization techniques. Our results show that, by matching
the regularizer to the statistics, one can almost replicate the
MMSE performance.

The rest of the paper is organized as follows: In Section
II, we introduce our signal model which relies on the general
formulation of sparse stochastic processes proposed in [16],
[17]. In Section IV, we explain the techniques for obtaining
the probability density functions and, we derive the estimation
methods in Section III. We study the special case of Lévy
processes which is of interest in many applications in Section
V, and present simulation results in Section VI. Section VII
concludes the paper.

II. SIGNAL MODEL

In this section, we adapt the general framework of [16]
to the continuous-time stochastic model studied in this paper.
We follow the same notational conventions and write the
input argument of the continuous-time signals/processes inside
parenthesis (e.g., s(·)) while we employ brackets (e.g., s[·])
for discrete-time ones. Moreover, the tilde diacritic is used
to indicate the noisy signal. Typically, s̃[·] represents discrete
noisy samples.

In Figure 1, we give a sketch of the model. The two
main parts are the continuous-time innovation process and the
linear operators. The process s(·) is generated by applying the
shaping operator L

�1 on the innovation process w. It can be
whitened back by the inverse operator L. (Since the whitening
operator is of greater importance, it is represented by L while
L

�1 refers to the shaping operator.) Furthermore, the discrete
observations s̃[·] are formed by the noisy measurements of
s(·).

The innovation process and the linear operators have distinct
implications on the resultant process s. Our model is able
to handle general innovation processes that may or may not
induce sparsity/compressibility. The distinction between these
two cases is identified by a function f(!) that is called
the Lévy exponent, as will be discussed in Section II-A.
The sparsity/compressibility of s and, consequently, of the
measurements s̃, is inherited from the innovations and is
observed in a transform domain. This domain is tied to the
operator L. In this paper, we deal with operators that we
represent by all-pole differential systems, tuned by acting upon
the poles.

Although the model in Figure 1 is rather classical for Gaus-
sian innovations, the investigation of non-Gaussian innovations
is nontrivial. While the transition from Gaussian to non-
Gaussian necessitates the reinvestigation of every definition
and result, it provides us with a more general class of stochas-
tic processes which includes compressible/sparse signals.

A. Innovation Process
Of all white processes, the Gaussian innovation is un-

doubtedly the one that has been investigated most thoroughly.
However, it represents only a tiny fraction of the large family
of white processes, which is best explored by using Gelfand’s
theory of generalized random processes. In his approach,
unlike with the conventional point-wise definition, the stochas-
tic process is characterized through inner products with test
functions. For this purpose, one first chooses a function space
E of test functions (e.g., the Schwartz class S of smooth and
rapidly decaying functions). Then, one considers the random
variable given by the inner product hw, 'i, where w represents
the innovation process and ' 2 E [18].

Definition 1: A stochastic process is called an innovation
process if

1) it is stationary, i.e., the random variables hw, '
1

i and
hw, '

2

i are identically distributed, provided '
2

is a
shifted version of '

1

, and
2) it is white in the sense that the random variables hw, '

1

i
and hw, '

2

i are independent, provided '
1

, '
2

2 E are
non-overlapping test functions (i.e., '

1

'
2

⌘ 0).
The characteristic form of w(·) is defined as

8 ' 2 E :

ˆP
w

(') = E
�

e

�jhw,'i , (2)

where E{·} represents the expected-value operator. The char-
acteristic form is a powerful tool for investigating the prop-
erties of random processes. For instance, it allows one to
easily infer the probability density function of the random
variable hw, 'i, or the joint densities of hw, '

1

i, . . . , hw, '
n

i.
Further details regarding characteristic forms can be found in
Appendix A.

The key point in Gelfand’s theory is to consider the form

ˆP
w

(') = exp

✓

Z

R
f
�

'(x)

�

dx

◆

. (3)

and to provide the necessary and sufficient conditions on f(!)

(the Lévy exponent) for w to define a generalized innovation
process over S 0

(dual of S). The class of admissible Lévy
exponents is characterized by the Lévy-Khintchine represen-
tation theorem [19], [20] as

f(!) = jµ! � �2

2

!2

+

Z

R\{0}

�

e

ja! � 1 � j!a
]�1,1[

(a)

�

v(a) da, (4)

where B(a) = 1 for a 2 B and 0 otherwise, and v(·) (the
Lévy density) is a real-valued density function that satisfies

Z

R\{0}
min(1, a2

)v(a) da < 1. (5)

In this paper, we consider only symmetric real-valued Lévy
exponents (i.e., µ = 0 and v(a) = v(�a)). Thus, the general
form of (4) is reduced to

f(!) = ��2

2

!2

+

Z

R\{0}
(cos(a!) � 1) v(a) da. (6)

Next, we discuss three particular cases of (6) which are of
special interest in this paper.
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Shaping Op. (Linear)

Whitening Op.

White Innovation Sparse Process

AWGN

Discrete Measurements 
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+

n[i]

s̃[i]w(x) s(x)

L

�1{·}

L{·}

Fig. 1. Connection between the white noise w(x), the sparse continuous signal s(x), and the discrete measurements s̃[i].

1) Gaussian Innovation: The choice v ⌘ 0 turns (6) into

f
G

(!) = ��2

2

!2, (7)

which implies

ˆP
w

G
(') = e

��

2

2 k'k2
2 . (8)

This shows that the random variable hwG , 'i has a zero-mean
Gaussian distribution with variance �2k'k2

2

.
2) Impulsive Poisson: Let � = 0 and v(a) = �p

a

(a), where
p

a

is a symmetric probability density function. The corre-
sponding white process is known as the impulsive Poisson
innovation. By substitution in (6), we obtain

f
IP

(!) = �

Z

R\{0}
(cos(a!) � 1) p

a

(a) da

= �
�

p̂
a

(!) � 1

�

, (9)

where p̂
a

denotes the Fourier transform of p
a

. Let
[0,1]

represents the test function that takes 1 on [0, 1] and 0

otherwise. Thus, if X = hw
IP

,
[0,1]

i, then for the pdf of
X we know that (see Appendix A)

p
X

(x) = F�1

!

⇢

e

�(p̂

a

(!)�1)

�

(x)

= e

��F�1

!

⇢ 1
X

i=0

�

�p̂
a

(!)

�

i

i!

�

(x)

= e

���(x) +

1
X

i=1

e

���i

i!

�

p
a

⇤ · · · ⇤ p
a

| {z }

i times

�

(x).(10)

It is not hard to check (see Appendix II in [14] for a proof) that
this distribution matches the one that we obtain by defining

w(x) =

X

k2Z
a

k

�(x � x
k

), (11)

where �(·) stands for the Dirac distribution,
�

x
k

 

k2Z ⇢ R is
a sequence of random Poisson points with parameter �, and
{a

k

}
k2Z is an independent and identically distributed (i.i.d.)

sequence with probability density p
a

independent of {x
k

}. The
sequence {x

k

}
k2Z is a Poisson point random sequence with

parameter � if, for all real values a < b < c < d, the random
variables N

1

=

�

�{x
k

} \ [a, b]
�

� and N
2

=

�

�{x
k

} \ [c, d]

�

� are
independent and N

1

(or N
2

) follows the Poisson distribution
with mean �(b � a) (or �(d � c)), which can be written as

Prob{N
1

= n} =

e

��(b�a)

�

�(b � a)

�

n

n!

. (12)

In [14], this type of innovation is introduced as a potential
candidate for sparse processes, since all the inner products
have a mass probability at x = 0.

3) Symmetric ↵-Stable: The stable laws are probability
density functions that are closed under convolution. More
precisely, the pdf of a random variable X is said to be stable
if, for two independent and identical copies of X , namely,
X

1

, X
2

, and for each pair of scalars 0  c
1

, c
2

, there exists
0  c such that c

1

X
1

+ c
2

X
2

has the same pdf as cX . For
stable laws, it is known that c↵

= c↵

1

+c↵

2

for some 0 < ↵  2

[21]; this is the reason why the law is indexed with ↵. An
↵-stable law which corresponds to a symmetric pdf is called
symmetric ↵-stable. It is possible to define symmetric ↵-stable
white processes for 0 < ↵ < 2 by considering � = 0 and
v(a) =

c

↵

|a|1+↵

, where 0 < c
↵

. From (6), we get

fS(!) = c

↵

Z

R\{0}

cos(a!)� 1

|a|↵+1
da = �2c

↵

Z

R

sin

2
�

a!

2

�

|a|↵+1
da

= �2c

↵

|!|↵
Z

R

sin

2
�

x

2

�

|x|↵+1
dx = �c̄

↵

|!|↵, (13)

where c̄
↵

is a positive constant. This yields
ˆP

w

S
(') = e

�c̄

↵

k'k↵

↵ , (14)

which confirms that every random variable of the form hwS , 'i
has a symmetric ↵-stable distribution [21]. The fat-tailed
distributions including ↵-stables for 0 < ↵ < 2 are known
to generate compressible sequences [11]. Meanwhile, the
Gaussian distributions are also stable laws that correspond to
the extreme value ↵ = 2 and have classical and well-known
properties that differ fundamentally from non-Gaussian laws.

The key message of this section is that the innovation
process is uniquely determined by its Lévy exponent f(!).
We shall explain in Section II-C how f(!) affects the sparsity
and compressibility properties of the process s.

B. Linear Operators
The second important component of the model is the

shaping operator (the inverse of the whitening operator L)
that determines the correlation structure of the process. For the
generalized stochastic definition of s in Figure 1, we expect
to have

hs, 'i = hL�1w, 'i = hw, L�1

⇤
'i, (15)

where L

�1

⇤ represents the adjoint operator of L

�1. It shows
that L

�1

⇤
' ought to define a valid test function for the
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equalities in (15) to remain valid. In turn, this sets constraints
on L

�1. The simplest choice for L

�1 would be that of an
operator which forms a continuous map from S into itself,
but the class of such operators is not rich enough to cover
the desired models in this paper. For this reason, we take
advantage of a result in [16] that extends the choice of shaping
operators to those L

�1 operators for which L

�1

⇤ forms a
continuous mapping from S into L

p

for some 1  p.
1) Valid Inverse Operator L

�1: In the sequel, we first
explain the general requirements on the inverse of a given
whitening operator L. Then, we focus on a special class of
operators L and study the implications for the associated
shaping operators in more details.

We assume L to be a given whitening operator, which may
or may not be uniquely invertible. The minimum requirement
on the shaping operator L

�1 is that it should form a right-
inverse of L (i.e., LL

�1

= I, where I is the identity operator).
Furthermore, since the adjoint operator is required in (15),
L

�1 needs to be linear. This implies the existence of a kernel
h(x, ⌧) such that

L

�1w(x) =

Z

R
h(x, ⌧)w(⌧)d⌧. (16)

Linear shift-invariant shaping operators are special cases that
correspond to h(x, ⌧) = h(x� ⌧). However, some of the L

�1

operators considered in this paper are not shift-invariant.
We require the kernel h to satisfy the following three

conditions:
(i) Lh(x, ⌧) = �(x � ⌧), where L acts on the parameter x

and � is the Dirac function,
(ii) h(x, ⌧) = 0, for ⌧ > max(0, x),
(iii) (1 + |⌧ |p�1

)

R

R
h(x,⌧)

1+|x|p dx is bounded for all p � 1.
Condition (i) is equivalent to LL

�1

= I, while (iii) is a
sufficient condition studied in [16] to establish the continuity
of the mapping L

�1

: S 7! L
p

, for all p. Condition (ii)
is a constraint that we impose in this paper to simplify the
statistical analysis. For x � 0, its implication is that the
random variable s(x) = L

�1w(x) is fully determined by w(⌧)

with ⌧  x, or, equivalently, it is independent of w(⌧) for
⌧ > x.

From now on, we focus on differential operators L of the
form

P

n

i=0

�
i

D

i, where D is the first-order derivative ( d

dx

),
D

0 is the identity operator (I), and �
i

are constants. With
Gaussian innovations, these operators generate the autoregres-
sive processes. An equivalent representation of L, which helps
us in the analysis, is its decomposition into first-order factors
as L = �

n

Q

n

i=1

(D � r
i

I). The scalars r
i

are the roots of
the characteristic polynomial and correspond to the poles of
the inverse linear system. Here, we assume that all the poles
are in the left half-plane <r

i

 0. This assumption helps us
associate the operator L to a suitable kernel h, as shown in
Appendix B.

Every differential operator L has a unique causal Green
function ⇢

L

[22]. The linear shift-invariant system defined by
h(x, ⌧) = ⇢

L

(x�⌧) satisfies conditions (i)-(ii). If all the poles
strictly lie in the left half-plane (i.e., <r

i

< 0), due to absolute
integrability of ⇢

L

(stability of the system), h(x, ⌧) satisfies
condition (iii) as well. The definition of L

�1 given through the

�(x � ⌧)

L

�1{·} L

d,T

{·} �
L,T

(x � ⌧)

(a)

w(x) u
T

(x)

�
L,T

(b)

Fig. 2. (a) Linear shift-invariant operator L
d,T

L

�1 and its impulse response
�L,T

(L-spline). (b) Definition of the auxiliary signal u
T

(x).

kernels in Appendix B achieves both linearity and stability,
while loosing shift-invariance when L contains poles on the
imaginary axis. It is worth mentioning that the application of
two different right-inverses of L on a given input produces
results that differ only by an exponential polynomial that is in
the null space of L.

2) Discretization: Apart from qualifying as whitening op-
erators, differential operators have other appealing properties
such as the existence of finite-length discrete counterparts.
To explain this concept, let us first consider the first-order
continuous-time derivative operator D that is associated with
the finite-difference filter H(z) = 1 � z�1. This discrete
counterpart is of finite length (FIR filter). Further, for any
right inverse of D such as D

�1, the system D

d,T

D

�1 is shift
invariant and its impulse response is compactly supported.
Here, D

d,T

is the discretized operator corresponding to the
sampling period T with impulse response

�

�(·) � �(· � T )

�

.
It should be emphasized that the discrete counterpart H(z)

is a discrete-domain operator, while the discretized operator
acts on continuous-domain signals. It is easy to check that
this impulse response coincides with the causal B-spline of
degree 0 (

[0,1[

). In general, the discrete counterpart of L =

�
n

Q

n

i=1

(D� r
i

I) is defined through its factors. Each D� r
i

I

is associated with its discrete counterpart H
i

(z) = 1� e

r

iz�1

and a discretized operator given by the impulse response
�(·) � e

r

i

T �(· � T ). The convolution of n such impulse
responses gives rise to the impulse response of L

d,T

(up to
the scaling factor �

n

), which is the discretized operator of L

for the sampling period T . By expanding the convolution, we
obtain the form

P

n

i=0

d
T

[k]�(·�kT ) for the impulse response
of L

d,T

. It is now evident that L

d,T

corresponds to an FIR filter
of length (n + 1) represented by {d

T

[k]}n

k=0

with d
T

[0] 6= 0.
Results in spline theory confirm that, for any right inverse
L

�1 of L, the operator L

d,T

L

�1 is shift invariant and the
support of its impulse response is contained in [0, nT ) [23].
The compactly supported impulse response of L

d,T

L

�1, which
we denote by �

L,T

(·), is usually referred to as the L-spline.
We define the generalized finite differences by

u
T

(x) =

�

�
L,T

⇤ w
�

(x) = (L

d,T

L

�1 w)(x)

= (L

d,T

s)(x) =

n

X

k=0

d
T

[k]s(x � kT ). (17)

We show in Figures 2 (a), (b) the definitions of �
L,T

(x)

and u
T

(x), respectively.
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C. Sparsity/Compressibility
The innovation process can be thought of as a concatenation

of independent atoms. A consequence of this independence
is that the process contains no redundancies. Therefore, it is
incompressible under unique representation constraint.

In our framework, the role of the shaping operator L

�1 is
to generate a specific correlation structure in s by mixing the
atoms of w. Conversely, the whitening operator L undoes the
mixing and returns an incompressible set of data, in the sense
that it maximally compresses the data. For a discretization of
s corresponding to a sampling period T , the operator L

d,T

mimics the role of L. It efficiently uncouples the sequence
of samples and produces the generalized differences u

T

,
where each term depends only on a finite number of other
terms. Thus, the role of L

d,T

can be compared to that of
converting discrete-time signals into their transform domain
representation. As we explain now, the sparsity/compressibility
properties of u

T

are closely related to the Lévy exponent f
of w.

The concept is best explained by focusing on a special
class known as Lévy processes that correspond to �

L,T

(x) =

[0,T [

(x) (see Section V for more details). By using (3)
and (53), we can check that the characteristic function of
the random variable u

T

is given by e

Tf(!). When the Lévy
function f is generated through a nonzero density v(a) that
is absolutely integrable (i.e., impulsive Poisson), the pdf of
u

T

associated with e

Tf(!) necessarily contains a mass at the
origin [20] (Theorems 4.18 and 4.20). This is interpreted as
sparsity when considering a finite number of measurements.

It is shown in [11], [12] that the compressibility of the
measurements depends on the tail of their pdf. In simple terms,
if the pdf decays at most inverse-polynomially, then, it is
compressible in some corresponding L

p

norm. The interesting
point is that the inverse-polynomial decay of an infinite-
divisible pdf is equivalent to the inverse-polynomial decay
of its Lévy density v(·) with the same order [20] (Theorem
7.3). Therefore, an innovation process with a fat-tailed Lévy
density results in processes with compressible measurements.
This indicates that the slower the decay rate of v(·), the more
compressible the measurements of s.

D. Summary of the Parameters of the Model
We now briefly review the degrees of freedom in the

model and how the dependent variables are determined. The
innovation process is uniquely determined by the Lévy triplet
(µ, �, v). The sparsity/compressibility of the process can be
determined through the Lévy density v (see Section II-C). The
values n and { �

i

�

n

}n�1

i=0

, or, equivalently, the poles {r
i

}n

i=1

of
the system, serve as the free parameters for the whitening
operator L. As explained in Section II-B2, the taps of the FIR
filter d

T

[i] are determined by the poles.

III. PRIOR DISTRIBUTION

To derive statistical estimation methods such as MAP and
MMSE, we need the a priori distributions. In this section, by
using the generalized differences in (17), we obtain the prior
distribution and factorize it efficiently. This factorization is

fundamental, since it makes the implementation of the MMSE
and MAP estimators tractable.

The general problem studied in this paper is to estimate
s(x) at

�

x = i m

m

s

 

m

s

i=0

for arbitrary m
s

2 N⇤ (values of
the continuous process s at a uniform sampling grid with
T =

m

m

s

), given a finite number (m + 1) of noisy/noiseless
measurements {s̃[k]}m

k=0

of s(x) at the integers. Although
we are aware that this is not equivalent to estimating the
continuous process, by increasing m

s

we are able to make the
estimation grid as fine as desired. For piecewise-continuous
signals, the limit process of refining the grid can give us access
to the properties of the continuous domain.

To simplify the notations let us define
⇢

s
T

[i] = s(x)|
x=iT

,
u

T

[i] = u
T

(x)|
x=iT

,
(18)

where u
T

(x) is defined in (17). Our goal is to derive the joint
distribution of s

T

[i] (a priori distribution). However, the s
T

[i]
are in general pairwise-dependent, which makes it difficult
to deal with the joint distribution in high dimensions. This
corresponds to a large number of samples. Meanwhile, as
will be shown in Lemma 1, the sequence {u

T

[i]}
i

forms a
Markov chain of order (n � 1) that helps in factorizing the
joint probability distributions, whereas {s

T

[i]}
i

does not. The
leading idea of this work is then that each u

T

[i] depends on a
finite number of u

T

[j], j 6= i. It then becomes much simpler
to derive the joint distribution of {u

T

[i]}
i

and link it to that
of {s

T

[i]}
i

. Lemma 1 helps us to factorize the joint pdf of
{u

T

[i]}
i

.
Lemma 1: For N � n and i � 0, where n is the differential

order of L,
1) the random variables {u

T

[i]}
i

are identically distributed,
2) the sequence {u

T

[i]}
i

is a Markov chain of order n�1,
and

3) the sample u
T

[i+N ] is statistically independent of u
T

[i]
and s

T

[i].
Proof. First note that

u
T

[i] =

�

�
L,T

⇤ w
�

(x)|
x=iT

= hw , �
L,T

(iT � ·)i. (19)

Since �
L,T

(iT � ·) functions are shifts of the same function
for various i and w is stationary (Definition 1), {u

T

[i]}
i

are
identically distributed.

Recalling that �
L,T

(·) is supported on [0, nT ), we know
that �

L,T

(iT � ·) and �
L,T

�

(i + N)T � ·
�

have no common
support for N � n. Thus, due to the whiteness of w c.f.
Definition 1), the random variables hw , �

L,T

(iT � ·)i and
hw , �

L,T

�

(i + N)T � ·
�

i are independent. Consequently, we
can write

p
u

�

u
T

[i + n]

�

� u
T

[i + n � 1], u
T

[i + n � 2], . . .
�

= p
u

�

u
T

[i + n]

�

� u
T

[i + n � 1], . . . , u
T

[i + 1]

�

, (20)

which confirms that the sequence {u
T

[i]}
i

forms a Markov
chain of order (n � 1). Note that the choice of N � n is due
to the support of �

L,T

. If the support of �
L,T

was infinite, it
would be impossible to find j such that u

T

[i] and u
T

[j] were
independent in the strict sense.
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To prove the second independence property, we recall that

s
T

[i] = s(x)

�

�

x=iT

=

Z

R
h(iT, ⌧)w(⌧)d⌧ = hw, h(iT, ·)i. (21)

Condition (ii) in Section II-B1 implies that h(iT, ⌧) = 0 for
⌧ > max(0, iT ). Hence, h(iT, ⌧) and �

L,T

�

(i+N)T �·
�

have
disjoint supports. Again due to whiteness of w, this implies
that u

T

[i + N ] and s
T

[i] are independent. ⌅
We now exploit the properties of u

T

[i] to obtain the a priori
distribution of s

T

[i]. Theorem 1, which is proved in Appendix
C summarizes the main result of Section III.

Theorem 1: Using the conventions of Lemma 1, for k �
2n � 1 we have

p
s

�

s
T

[k], . . . , s
T

[0]

�

=

k

Y

✓=2n�1

�

�d
T

[0]

�

� p
u

⇣

u
T

[✓]
�

�

�

�

u
T

[✓ � i]
 

n�1

i=1

⌘

⇥ p
s

�

s
T

[2n � 2], . . . , s
T

[0]

�

. (22)

In the definition of L

�1 proposed in Section II-B, except
when all the poles are strictly included in the left half-plane,
the operator L

�1 fails to be shift-invariant. Consequently, nei-
ther s(x) nor s

T

[i] are stationary. An interesting consequence
of Theorem 1 is that it relates the probability distribution of the
non-stationary process s

T

[i] to that of the stationary process
u

T

[i] plus a minimal set of transient terms.
Next, we show in Theorem 2 how the conditional probability

of u
T

[i] can be obtained from a characteristic form. To
maintain the flow of the paper, the proof is postponed to
Appendix D.

Theorem 2: The probability density function of u
T

[✓] con-
ditioned on (n � 1) previous u

T

[i] is given by

p
u

⇣

u
T

[✓]
�

�

�

�

u
T

[✓ � i]
 

n�1

i=1

⌘

=

F�1
{!

i

}

n

e

I

w,�L,T

(!0,...,!

n�1)
o

�

{u

T

[✓�i]}n�1
i=0

�

F�1
{!

i

}

n

e

I

w,�L,T

(0,!1,...,!

n�1)
o

�

{u

T

[✓�i]}n�1
i=1

�

, (23)

where

I
w,�L,T

(!
0

, . . . , !
n�1

) :=

R

R f
w

⇣

P

n�1

i=0

!
i

�
L,T

(x � iT )

⌘

dx. (24)

IV. SIGNAL ESTIMATION

MMSE and MAP estimation are two common statistical
paradigms for signal recovery. Since the optimal MMSE
estimator is rarely realizable in practice, MAP is often used
as the next best thing. In this section, in addition to applying
the two methods to the proposed class of signals, we settle the
question of knowing when MAP is a good approximation of
MMSE.

For the estimation purpose it is convenient to assume that
the sampling instances associated with s̃[i] are included in
the uniform sampling grid for which we want to estimate the
values of s. In other words, we assume that T =

m

m

s

=

1

n

T

,
where T is the sampling period in the definition of s

T

[·] and
n

T

is a positive integer. This assumption does impose no lower

bound on the resolution of the grid because we can set T
arbitrarily close to zero by increasing n

T

.
To simplify mathematical formulations, we use vectorial

notations. We indicate the vector of noisy/noiseless measure-
ments {s̃[i]}m

i=0

by ˜

s. The vector s
T

stands for the hypothetical
realization {s

T

[k]}mn

T

k=0

of the process on the considered grid,
and s

T,n

T

denotes the subset {s
T

[in
T

]}m

i=0

that corresponds
to the points at which we have a sample. Finally, we represent
the vector of estimated values {ŝ

T

[k]}mn

T

k=0

by ˆ

s

T

.

A. MMSE Denoising

It is very common to evaluate the quality of an estimation
method by means of the mean-square error, or SNR. In this
regard, the best estimator, known as MMSE, is obtained by
evaluating the posterior mean, or ˆ

s

T

= E{s
T

|˜s}.
For Gaussian processes, this expectation is easy to obtain,

since it is equivalent to the best linear estimator [24]. However,
there are only a few non-Gaussian cases where an explicit
closed form of this expectation is known. In particular, if the
additive noise is white and Gaussian (no restriction on the
distribution of the signal) and pure denoising is desired (T =

1), then the MMSE estimator can be reformulated as

ˆ

s

MMSE

=

˜

s + �2

n

r log p
s̃

(x)

�

�

x=˜s

, (25)

where ˆ

s

MMSE

stands for ˆ

s

T,MMSE

with T = 1, and �2

n

is the
variance of the noise [25], [26], [27]. Note that the pdf p

s̃

,
which is the result of convolving the a priori distribution p

s

with the Gaussian pdf of the noise, is both continuous and
differentiable.

B. MAP Estimator

Searching for the MAP estimator amounts to finding the
maximizer of the distribution p(s

T

| ˜

s). It is commonplace to
reformulate this conditional probability in terms of the a priori
distribution.

The additive discrete noise ñ is white and Gaussian with
the variance �2

n

. Thus,

p
�

s

T

�

�

˜

s

�

= p
�

˜

s

�

�

s

T

�p
s

(s

T

)

p
s̃

(

˜

s)

=

e

�1
2�2

n

k˜s�s

T,n

T

k2
2

(2⇡�2

n

)

m+1
2

p
s

(s

T

)

p
s̃

(

˜

s)

. (26)

In MAP estimation, we are looking for a vector s

T

that
maximizes the conditional a posteriori probability, so that (26)
leads to

ˆ

s

T,MAP

= arg max

s

T

p
�

s

T

�

�

˜

s

�

= arg max

s

T

e

�1
2�2

n

k˜s�s

T,n

T

k2
2 p

s

(s

T

)

(2⇡�2

n

)

m+1
2 p

s̃

(

˜

s)

= arg max

s

T

e

�1
2�2

n

k˜s�s

T,n

T

k2
2p

s

(s

T

). (27)

The last equality is due to the fact that neither (2⇡�2

n

)

m+1
2

nor p
s̃

(

˜

s) depend on the choice of s

T

. Therefore, they play
no role in the maximization.
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If the pdf of s

T

is bounded, the cost function (27) can be
replaced with its logarithm without changing the maximizer.
The equivalent logarithmic maximization problem is given by

ˆ

s

T,MAP

= arg min

s

T

ks
T,n

T

� ˜

sk2

2

� 2�2

n

log p
s

(s

T

). (28)

By using the pdf factorization provided by Theorem 1, (28) is
further simplified to

ˆ

s

T,MAP

= arg min

s

T

⇢

ks
T,n

T

� ˜

sk2

2

�2�2

n

mn

T

X

k=2n�1

log p
u

�

u
T

[k]

�

�

�

u
T

[k � i]
 

n�1

i=1

�

�2�2

n

log p
s

�

s
T

[2n � 2], . . . , s
T

[0]

�

�

, (29)

where each u
T

[i] is provided by the linear combi-
nation of the elements in s

T

found in (17). If we
denote the term

⇣

� log p
u

�

u
T

[k]

�

�

�

u
T

[k � i]
 

n�1

i=1

�

⌘

by
 

T

�

u
T

[k], . . . , u
T

[k � n + 1]

�

, the MAP estimation becomes
equivalent to the minimization problem

ˆ

s

T,MAP

= arg min

s

T

⇢

ks
T,n

T

� ˜

sk2

2

+�

mn

T

X

k=2n�1

 

T

�

u
T

[k], . . . , u
T

[k � n + 1]

�

�� log p
s

�

s
T

[2n � 2], . . . , s
T

[0]

�

�

, (30)

where � = 2�2

n

. The interesting aspect is that the MAP estima-
tor has the same form as (1) where the sparsity-promoting term
 

T

in the cost function is determined by both L

�1 and the
distribution of the innovation. The well-known and successful
TV regularizer corresponds to the special case where  

T

(·) is
the univariate function | · | and the FIR filter d

T

[·] is the finite-
difference operator. In Appendix E, we show the existence of
an innovation process for which the MAP estimation coincides
with the TV regularization.

C. MAP vs MMSE
To have a rough comparison of MAP and MMSE, it is

beneficial to reformulate the MMSE estimator in (25) as a
variational problem similar to (30), thereby, expressing the
MMSE solution as the minimizer of a cost function that
consists of a quadratic term and a sparsity-promoting penalty
term. In fact, for sparse priors, it is shown in [13] that the
minimizer of a cost function involving the `

1

-norm penalty
term approximates the MMSE estimator more accurately than
the commonly considered MAP estimator. Here, we propose
a different interpretation without going into technical details.
From (25), it is clear that

ˆ

s

MMSE

=

˜

s + �2

n

r log p
s̃

�

ˆ

s

MMSE

� b

s̃

�

, (31)

where b

s̃

= �2

n

r log p
s̃

�

˜

s

�

. We can check that ˆ

s

MMSE

in (31)
sets the gradient of the cost J(s) = ks�˜

sk2

2

� 2�2

n

log p
s̃

(s�
b

s̃

) to zero. It suggests that

ˆ

s

MMSE

= arg min

s

ks � ˜

sk2

2

� 2�2

n

log p
s̃

(s � b

s̃

). (32)

which is similar to (28). The latter result is only valid when
the cost function has a unique minimizer. Similarly to [13],
it is possible to show that, under some mild conditions, this
constraint is fulfilled. Nevertheless, for the qualitative compar-
ison of MAP and MMSE, we only focus on the local properties
of the cost functions that are involved. The main distinction
between the cost functions in (32) and (28) is the required pdf.
For MAP, we need p

s

, which was shown to be factorizable by
the introduction of generalized finite differences. For MMSE,
we require p

s̃

. Recall that p
s̃

is the result of convolving p
s

with
a Gaussian pdf. Thus, irrespective of the discontinuities of p

s

,
the function p

s̃

is smooth. However, the latter is no longer
separable, which complicates the minimization task. The other
difference is the offset term b

s̃

in the MMSE cost function.
For heavy-tail innovations such as ↵-stables, the convolution
by the Gaussian pdf of the noise does not greatly affect p

s

.
In such cases, p

s̃

can be approximated by p
s

fairly well,
indicating that the MAP estimator suffers from a bias (b

s̃

).
The effect of convolving p

s

with a Gaussian pdf becomes more
evident as p

s

decays faster. In the extreme case where p
s

is
Gaussian, p

s̃

is also Gaussian (convolution of two Gaussians)
with a different mean (which introduces another type of bias).
The fact that MAP and MMSE estimators are equivalent
for Gaussian innovations indicates that the two biases act in
opposite directions and cancel out each other. In summary, for
super-exponentially decaying innovations, MAP seems to be
consistent with MMSE. For heavy-tail innovations, however,
the MAP estimator is a biased version of the MMSE, where
the effect of the bias is observable at high noise powers. The
scenario in which MAP diverges most from MMSE might be
the exponentially decaying innovations, where we have both a
mismatch and a bias in the cost function, as will be confirmed
in the experimental part of the paper.

V. EXAMPLE: LÉVY PROCESS

To demonstrate the results and implications of the theory,
we consider Lévy processes as special cases of the model in
Figure 1. Lévy processes are roughly defined as processes with
stationary and independent increments that start from zero. The
processes are compatible with our model by setting L =

d

dx

(i.e., n = 1 and r
1

= 0), L

�1

=

R

x

0

, or h(x, ⌧) =

[0,1[

(x �
⌧)�

[0,1[

(�⌧) which imposes the boundary condition s(0) =

R

0

0

w(⌧)d⌧ = 0. The corresponding discrete FIR filter has the
two taps d

T

[0] = 1 and d
T

[1] = �1. The impulse response of
L

d,T

L

�1 is given by

�
L,T

(x) = u(x) � u(x � T ) =

⇢

1, 0  x < T
0, otherwise. (33)

A. MMSE Interpolation

A classical problem is to interpolate the signal using noise-
less samples. This corresponds to the estimation of s

T

[✓]
where n

T

- ✓ (n
T

does not divide ✓) by assuming s̃[i] =

s
T

[in
T

] (0  i  m). Although there is no noise in this
scenario, we can still employ the MMSE criterion to estimate
s

T

[✓]. We show that the MMSE interpolator of a Lévy process
is the simple linear interpolator, irrespective of the type of
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innovation. To prove this, we assume l n
T

< ✓ < (l + 1)n
T

and rewrite s
T

[✓] as

s
T

[✓] = s
T

[ln
T

] +

✓

X

k=ln

T

+1

s
T

[k] � s
T

[k � 1]

| {z }

u

T

[k]

. (34)

This enables us to compute

ŝ
T

[✓] = E
�

s
T

[✓]
�

� {s
T

[in
T

]}m

i=0

 

= s
T

[ln
T

] + E
n

✓

X

k=ln

T

+1

u
T

[k]

�

�

�

{s
T

[kn
T

]}
i

o

.(35)

Since the mapping from the set {s
T

[in
T

]}
i

to {s
T

[0]} [
{u

1

[i] = s
T

[(i + 1)n
T

] � s
T

[in
T

]}
i

is one to one, the two
sets can be used interchangeably for evaluating the conditional
expectation. Thus,

ŝ
T

[✓] = s
T

[ln
T

] +

✓

X

k=ln

T

+1

E
n

u
T

[k]

�

�

�

{s
T

[0]} [ {u
1

[i]}
i

o

.

(36)

According to Lemma 1, u
T

[k] (for k > 0) is independent
of s

T

[0] and u
T

[k
0
], where k 6= k

0
. By rewriting u

1

[i] as
P

(i+1)n

T

k

0
=in

T

+1

u
T

[k
0
], we conclude that u

1

[i] is independent of
u

T

[k] unless in
T

+ 1  k  (i + 1)n
T

. Hence,

ŝ
T

[✓] = s
T

[ln
T

] +

✓

X

k=ln

T

+1

E
n

u
T

[k]

�

�

�

u
1

[l + 1]

o

. (37)

Since u
1

[l + 1] =

P

(l+1)n

T

i=ln

T

+1

u
T

[i] and {u
T

[i]}
i

is a se-
quence of i.i.d. random variables, the expected mean of
u

T

[i] conditioned on u
1

[l + 1] is the same for all i with
ln

T

+ 1  i  (l + 1)n
T

, which yields

E
n

u
T

[k]

�

�

�

u
1

[l + 1]

o

=

1

n
T

(l+1)n

T

X

i=ln

T

+1

E
n

u
T

[i]
�

�

�

u
1

[l + 1]

o

=

1

n
T

E
n

(l+1)n

T

X

i=ln

T

+1

u
T

[i]
�

�

�

u
1

[l + 1]

o

=

u
1

[l + 1]

n
T

. (38)

By applying (38) to (37), we obtain

ŝ
T

[✓] = s
T

[ln
T

] +

✓ � ln
T

n
T

u
1

[l + 1]

= (1 � �
✓

) s
T

[ln
T

] + �
✓

s
T

[(l + 1)n
T

], (39)

where �
✓

=

✓�ln

T

n

T

. Obviously, (39) indicates a linear interpo-
lation between the samples.

B. MAP Denoising
Since n = 1, the finite differences u

T

[i] are independent.
Therefore, the conditional probabilities involved in Theorem
1 can be replaced with the simple pdf values

p
s

�

s
T

[k], . . . , s
T

[0]

�

= p
s

�

s
T

[0]

�

k

Y

✓=1

p
u

�

u
T

[✓]
�

. (40)

In addition, since f
w

(0) = 0, from Theorem 2, we have
⇢

I
w,�L,T

(!) = Tf
w

(!)

p
u

�

u
T

[✓]
�

= F�1

!

�

e

Tf

w

(!)

 �

u
T

[✓]
�

.
(41)

In the case of impulsive Poisson innovations, as shown in
(10), the pdf of u

T

[i] has a single mass probability at x = 0.
Hence, the MAP estimator will choose u

T

[i] = 0 for all i,
resulting in a constant signal. In other words, according to the
MAP criterion and due to the boundary condition s(0) = 0, the
optimal estimate is nothing but the trivial all-zero function. For
the other types of innovations where the pdf of the increments
u

T

[i] is bounded, or, equivalently, when the Lévy density v(·)
is singular at the origin [20], one can reformulate the MAP
estimation in the form of (30) as

ŝ
T

[0] = 0 and

�

ŝ
T

[k]

 

mn

T

k=1

= arg min

s

T

[k]

n

m

X

i=1

�

s̃[i] � s
T

[in
T

]

�

2

+� 
T

�

s
T

[1]

�

+�

mn

T

X

k=2

 

T

�

s
T

[k] � s
T

[k � 1]

�

o

,(42)

where  
T

(·) = � log p
u

(·) and � = 2�2

n

. Because shifting
the function  

T

with a fixed additive scalar does not change
the minimizer of (42), we can modify the function to pass
through the origin (i.e.,  

T

(0) = 0). After having applied this
modification, the function  

T=1

presents itself as shown in
Figure 3 for various innovation processes such as

1) Gaussian innovation: � = 1, and v(a) ⌘ 0, which
implies

p
u

(x) =

e

� x

2

2

p
2⇡

. (43)

2) Laplace-type innovation: � = 0, v(a) =

e

�
p

2e
⇡

|a|

|a| ,
which implies (see Appendix E)

p
u

(x) =

r

e

2⇡
e

�
p

2e
⇡

|x|. (44)

The Lévy process of this innovation is known as the
variance gamma process [28].

3) Cauchy innovation (↵-stable with ↵ = 1): � = 0, v(a) =p
e

8⇡3

a

2 , which implies

p
u

(x) =

q

8e

⇡

e + 8⇡x2

. (45)

The parameters of the above innovations are set such that
they all lead to the same entropy value log(2⇡e)

2

⇡ 1.41.
The negative log-likelihoods of the first two innovation types
resemble the `

2

and `
1

regularization terms. However, the
curve of  

T

for the Cauchy innovation shows a nonconvex
log-type function.
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(·) = � log p

u

(·) functions at T = 1 for Gaussian, Laplace,
and Cauchy distributions. The parameters of each pdf are tuned such that they
all have the same entropy and the curves are shifted to enforce them to pass
through the origin.

C. MMSE Denoising
As discussed in Section IV-C, the MMSE estimator, either

in the expectation form or as a minimization problem, is
not separable with respect to the inputs. This is usually a
critical restriction in high dimensions. Fortunately, due to the
factorization of the joint a priori distribution, we can lift
this restriction by employing the powerful message-passing
algorithm. The method consists of representing the statistical
dependencies between the parameters as a graph and finding
the marginal distributions by iteratively passing the estimated
pdfs along the edges [29]. The transmitted messages along
the edges are also known as beliefs, which give rise to the
alternative name of belief propagation. In general, the marginal
distributions (beliefs) are continuous-domain objects. Hence,
for computer simulations we need to discretize them.

In order to define a graphical model for a given joint
probability distribution, we need to define two types of nodes:
variable nodes that represent the input arguments for the joint
pdf and factor nodes that portray each one of the terms in
the factorization of the joint pdf. The edges in the graph are
drawn only between nodes of different type and indicate the
contribution of an input argument to a given factor.

For the Lévy process, we consider the joint conditional pdf
p
�

{s
T

[k]}
k

�

� {s̃[i]}
i

�

factorized as

p
⇣

{s
T

[k]}m

k=1

�

�

�

{s̃[i]}m

i=1

⌘

=

Q
m

i=1 G
(

s̃[i]�s

T

[i];�

2
n

)

Q
mn

T

k=1 p

u

(s

T

[k]�s

T

[k�1])

Z

, (46)

where Z = p
s̃

({s̃[i]}m

i=1

) is a normalization constant that
depends only on the noisy measurements and G is the Gaussian
function defined as

G
�

x; �2

�

=

1

�
p

2⇡
e

� x

2

2�2 . (47)

Note that, by definition, we have s
T

[0] = 0.
For illustration purposes, we consider the special case of

pure denoising corresponding to T = 1. We give in Figure
4 the bipartite graph G = (V, F, E) associated to the joint
pdf (46). The variable nodes V = {1, . . . , m} depicted in the
middle of the graph stand for the input arguments {s

T

[k]}m

k=1

.
The factor nodes F = {1, . . . , 2m} are placed at the right and

.

.

.

.

.

.

.

.

.

p
u

�

s
1

[1]

�

p
u

�

s
1

[2] � s
1

[1]

�

p
u

�

s
1

[3] � s
1

[2]

�

p
u

�

s
1

[m] � s
1

[m � 1]

�

G
�

s̃[1] � s
1

[1] ; �2

n

�

G
�

s̃[2] � s
1

[2] ; �2

n

�

G
�

s̃[3] � s
1

[3] ; �2

n

�

G
�

s̃[m] � s
1

[m] ; �2

n

�

s
1

[1]

s
1

[2]

s
1

[3]

s
1

[m]

prior

distribution

distribution

noise

conditional

probability

Fig. 4. Factor graph for the MMSE denoising of a Lévy process. There are
m variable nodes (circles) and 2m factor nodes (squares).

left sides of the variable nodes depending on whether they
represent the Gaussian factors or the p

u

(·) factors, respectively.
The set of edges E = {(i, a) 2 V ⇥ F} also indicates a
participation of the variable nodes in the corresponding factor
nodes.

The message-passing algorithm consists of initializing the
nodes of the graph with proper 1D functions and updat-
ing these functions through communications over the graph.
It is desired that we eventually obtain the marginal pdf
p
�

s
1

[k]

�

� {s̃[i]}m

i=1

�

on the kth variable node, which enables
us to obtain the mean. The details of the messages sent over
the edges and updating rules are given in [30], [31].

VI. SIMULATION RESULTS

For the experiments, we consider the denoising of Lévy
processes for various types of innovation, including those
introduced in Section II-A and the Laplace-type innovation
discussed in Appendix E. Among the heavy-tail ↵-stable
innovations, we choose the Cauchy distribution corresponding
to ↵ = 1. The four implemented denoising methods are

1) Linear minimum mean-square error (LMMSE) method
or quadratic regularization (also known as smoothing
spline [32]) defined as

arg min

s[i]

n

ks � ˜

sk2

`2
+ �

m

X

i=1

�

s[i] � s[i � 1]

�

2

o

, (48)

where � should be optimized. For finding the optimum �
for given innovation statistics and a given additive-noise
variance, we search for the best � for each realization by
comparing the results with the oracle estimator provided
by the noiseless signal. Then, we average � over a num-
ber of realizations to obtain a unified and realization-
independent value. This procedure is repeated each time
the statistics (either the innovation or the additive noise)
change. For Gaussian processes, the LMMSE method
coincides with both the MAP and MMSE estimators.

2) Total-variation regularization represented as

arg min

s[i]

n

ks � ˜

sk2

`2
+ �

m

X

i=1

�

�s[i] � s[i � 1]

�

�

o

, (49)

where � should be optimized. The optimization process
for � is similar to the one explained for the LMMSE
method.
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Fig. 5. SNR improvement vs. variance of the additive noise for Gaussian
innovations. The denoising methods are: MMSE estimator (which is equiv-
alent to MAP and LMMSE estimators here), Log regularization, and TV
regularization.

3) Logarithmic (Log) regularization described by

argmin

s[i]

n

ks� ˜sk2
`2

+ �

m

X

i=1

log

⇣

1 +

(s[i]� s[i� 1])

2

✏

2

⌘o

, (50)

where � should be optimized. The optimization pro-
cess is similar to the one explained for the LMMSE
method. In our experiments, we keep ✏ = 1 fixed
throughout the minimization steps (e.g., in the gradient-
descent iterations). Unfortunately, Log is not necessarily
convex, which might result in a nonconvex cost function.
Hence, it is possible that gradient-descent methods get
trapped in local minima rather than the desired global
minimum. For heavy-tail innovations (e.g., ↵-stables),
the Log regularizer is either the exact, or a very good
approximation of, the MAP estimator.

4) Minimum mean-square error denoiser which is imple-
mented using the message-passing technique discussed
in Section V-C.

The experiments are conducted in MATLAB. We have
developed a graphical user interface that facilitates the pro-
cedures of generating samples of the stochastic process and
denoising them using MMSE or the variational techniques.

We show in Figure 5 the SNR improvement of a Gaus-
sian process after denoising by the four methods. Since the
LMMSE and MMSE methods are equivalent in the Gaussian
case, only the MMSE curve obtained from the message-
passing algorithm is plotted. As expected, the MMSE method
outperforms the TV and Log regularization techniques. The
counter intuitive observation is that Log, which includes a
nonconvex penalty function, performs better than TV. Another
advantage of the Log regularizer is that it is differentiable and
quadratic around the origin.

A similar scenario is repeated in Figure 6 for the compound-
Poisson innovation with � = 0.6 and Gaussian amplitudes
(zero-mean and � = 1). As mentioned in Section V-B, since
the pdf of the increments contains a mass probability at x =

0, the MAP estimator selects the all-zero signal as the most
probable choice. In Figure 6, this trivial estimator is excluded
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Fig. 6. SNR improvement vs. variance of the additive noise for Gaussian
compound Poisson innovations. The denoising methods are: MMSE estimator,
Log regularization, TV regularization, and LMMSE estimator.
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Fig. 7. SNR improvement vs. variance of the additive noise for Cauchy (↵-
stable with ↵ = 1) innovations. The denoising methods are: MMSE estimator,
Log regularization (which is equivalent to MAP here), TV regularization, and
LMMSE estimator.

from the comparison. It can be observed that the performance
of the MMSE denoiser, which is considered to be the gold
standard, is very close to that of the TV regularization method
at low noise powers where the source sparsity dictates the
structure. This is consistent with what was predicted in [13].
Meanwhile, it performs almost as well as the LMMSE method
at large noise powers. There, the additive Gaussian noise is the
dominant term and the statistics of the noisy signal is mostly
determined by the Gaussian constituent, which is matched to
the LMMSE method. Excluding the MMSE method, none of
the other three outperforms another one for the entire range
of noise.

Heavy-tail distributions such as ↵-stables produce sparse
or compressible sequences. With high probability, their real-
izations consist of a few large peaks and many insignificant
samples. Since the convolution of a heavy-tail pdf with a Gaus-
sian pdf is still heavy-tail, the noisy signal looks sparse even
at large noise powers. The poor performance of the LMMSE
method observed in Figure 7 for Cauchy distributions confirms
this characteristic. The pdf of the Cauchy distribution, given
by 1

⇡(1+x

2
)

, is in fact the symmetric ↵-stable distribution with
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Fig. 8. SNR improvement vs. variance of the additive noise for Laplace-type
innovations. The denoising methods are: MMSE estimator, Log regularization,
TV regularization (which is equivalent to MAP here), and LMMSE estimator.

↵ = 1. The Log regularizer corresponds to the MAP estimator
of this distribution while there is no direct link between the
TV regularizer and the MAP or MMSE criteria. The SNR
improvement curves in Figure 7 indicate that the MMSE
and Log (MAP) denoisers for this sparse process perform
similarly (specially at small noise powers) and outperform the
corresponding `

1

-norm regularizer (TV).
In the final scenario, we consider innovations with � = 0

and v(a) =

e

�|a|

|a| . This results in finite differences obtained
at T = 1 that follow a Laplace distribution (see Appendix E).
Since the MAP denoiser for this process coincides with TV
regularization, sometimes the Laplace distribution has been
considered to be a sparse prior. However, it is proved in [11],
[12] that the realizations of a sequence with Laplace prior
are not compressible, almost surely. The curves presented in
Figure 8 show that TV is a good approximation of the MMSE
method only in light-noise conditions. For moderate to large
noise, the LMMSE method is better than TV.

VII. CONCLUSION

In this paper, we studied continuous-time stochastic pro-
cesses where the process is defined by applying a linear
operator on a white innovation process. For specific types
of innovation, the procedure results in sparse processes. We
derived a factorization of the joint posterior distribution for the
noisy samples of the broad family ruled by fixed-coefficient
stochastic differential equations. The factorization allows us to
efficiently apply statistical estimation tools. A consequence of
our pdf factorization is that it gives us access to the MMSE
estimator. It can then be used as a gold standard for evaluating
the performance of regularization techniques. This enables
us to replace the MMSE method with a more-tractable and
computationally efficient regularization technique matched to
the problem without compromising the performance. We then
focused on Lévy processes as a special case for which we
studied the denoising and interpolation problems using MAP
and MMSE methods. We also compared these methods with
the popular regularization techniques for the recovery of sparse
signals, including the `

1

norm (e.g., TV regularizer) and the

Log regularization approaches. Simulation results showed that
we can almost achieve the MMSE performance by tuning
the regularization technique to the type of innovation and
the power of the noise. We have also developed a graphical
user interface in MATLAB which generates realizations of
stochastic processes with various types of innovation and
allows the user to apply either the MMSE or variational
methods to denoise the samples1.

APPENDIX A
CHARACTERISTIC FORMS

In Gelfand’s theory of generalized random processes, the
process is defined through its inner product with a space of
test functions, rather than point values. For a random process
w and an arbitrary test function ' chosen from a given space,
the characteristic form is defined as the characteristic function
of the random variable X = hw, 'i and given by

ˆP
w

(') = E
�

e

�jhw,'i 
=

Z

R
p

X

(x)e

�jx

dx

= F
x

�

p
X

(x)

 

(1). (51)

As an example, let wG be a normalized white Gaussian noise
and let ' be an arbitrary function in L

2

(R). It is well-known
that hwG , 'i is a zero-mean Gaussian random variable with
variance k'k2

L2
. Thus, in this example we have that

ˆP
w

G
(') = e

� 1
2k'k2

L2 . (52)

An interesting property of the characteristic forms is that
they help determine the joint probability density functions for
arbitrary finite dimensions as

ˆP
w

�

k

X

i=1

!
i

'
i

�

= E
�

e

�jhw,

P
k

i=1 !

i

'

i

i 

= E
�

e

�j

P
k

i=1 !

i

X

i

 

= F
x

�

p
X

(x)

 

(!
1

, . . . , !
k

), (53)

where {'
i

}
i

are test functions and {!
i

} are scalars. Equation
(53) shows that an inverse Fourier transform of the character-
istic form can yield the desired pdf. Beside joint distributions,
characteristic forms are useful for generating moments too:

@

n1+···+n

k

@!

n1
1 · · · @!n

k

k

ˆP
w

�

k

X

i=1

!

i

'

i

�

�

�

�

!1=···=!

k

=0

= (�j)

n1+···+n

k

Z

Rk

x

n1
1 · · ·xn

k

k

p

X

(x1, . . . , xk

)dx1 · · · dxk

= (�j)

n1+···+n

kE
�

x

n1
1 · · ·xn

k

k

 

. (54)

Note that the definition of random processes through char-
acteristic forms includes the classical definition based on the
point values by choosing Diracs as the test functions (if
possible).

Except for the stable processes, it is usually hard to find the
distributions of linear transformations of a process. However,
there exists a simple relation between the characteristic forms:

1The GUI is available at http://bigwww.epfl.ch/amini/MATLAB codes/
SSS GUI.zip
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Let w be a random process and define ⇠ = Lw, where L is
a linear operator. Also denote the adjoint of L by L

⇤. Then,
one can write

ˆP
⇠

(') = E
�

e

�jhLw,'i 
= E

�

e

�jhw,L

⇤
'i 

=

ˆP
w

(L

⇤'). (55)

Now it is easy to extract the probability distribution of ⇠ from
its characteristic form.

APPENDIX B
SPECIFICATION OF nTH-ORDER SHAPING KERNELS

To show the existence of a kernel h for the nth-order
differential operator L = �

n

Q

n

i=1

(D � r
i

I), we define

h
i

(x, ⌧) =

8

<

:

e

r

i

(x�⌧)

�

[0,1[

(x � ⌧)

�
[0,1[

(x̄
i

� ⌧)

�

, <r
i

= 0,
e

r

i

(x�⌧)

[0,1[

(x � ⌧), <r
i

< 0,

(56)

where x̄
i

are nonpositive fixed real numbers. It is not hard to
check that h

i

satisfies the conditions (i)-(iii) for the operator
L

i

= D � r
i

I. Next, we combine h
i

to form a proper kernel
for L

�1 as

h(x, ⌧) =

1

�
n

Z

Rn�1

n

Y

i=1

h
i

(⌧
i+1

, ⌧
i

)

n

Y

i=2

d⌧
i

�

�

�

⌧1=⌧

⌧

n+1=x

. (57)

By relying on the fact that the h
i

satisfy conditions (i)-(iii),
it is possible to prove by induction that h also satisfies (i)-
(iii). Here, we only provide the main idea for proving (i). We
use the factorization L = �

n

L

1

· · · L
n

and sequentially apply
every L

i

on h. The starting point i = n yields

L

n

h(x, ⌧) =

Z

Rn�1

�(x � ⌧
n

)

Q

n

i=1

h
i

(⌧
i+1

, ⌧
i

)d⌧
i

�
n

h
n

(⌧
n+1

, ⌧
n

)

�

�

�

⌧1=⌧

=

1

�
n

Z

Rn�2

n�1

Y

i=1

h
i

(⌧
i+1

, ⌧
i

)

n�1

Y

i=2

d⌧
i

�

�

�

⌧1=⌧

⌧

n

=x

.(58)

Thus, L

n

h(x, ⌧) has the same form as h with n replaced by
n � 1. By continuing the same procedure, we finally arrive at
L

1

h
1

(x, t), which is equal to �(x � ⌧).

APPENDIX C
PROOF OF THEOREM 1

For the sake of simplicity in the notations, for ✓ � n we
define

u[✓] =

2

6

6

6

6

6

6

6

6

6

6

6

4

u

T

[✓]

u

T

[✓ � 1]

...
u

T

[n]

s

T

[n� 1]

s

T

[n� 2]

...
s

T

[0]

3

7

7

7

7

7

7

7

7

7

7

7

5

. (59)

Since the u
T

[i] are linear combinations of s
T

[i], the
�

(✓ +

1)⇥1

�

vector u[✓] can be linearly expressed in terms of s
T

[i]

as

u[✓] = D

(✓+1)⇥(✓+1)

2

6

6

6

4

s
T

[✓]
s

T

[✓ � 1]

...
s

T

[0]

3

7

7

7

5

, (60)

where D

(✓+1)⇥(✓+1)

is an upper-triangular matrix defined by
2

6

6

6

6

6

6

6

4

d
T

[0] d
T

[1] · · · d
T

[n] 0 · · · 0

0 d
T

[0] · · · d
T

[n � 1] d
T

[n] · · · 0

...
...

0 0 · · · 0 d
T

[0] · · · d
T

[n]

� � � � � � � � � � � � � � � � � � � � �
0

n⇥(✓+1�n)

I

n⇥n
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7

7

5

.

(61)

Since d
T

[0] 6= 0, none of the diagonal elements of the
upper-triangular matrix D

(✓+1)⇥(✓+1)

is zero. Thus, the ma-
trix is invertible because detD

(✓+1)⇥(✓+1)

= (d
T

[0])

✓+1�n.
Therefore, we have that

p
s,u

�

u[✓]
�

=

p
s

�

s
T

[✓], . . . , s
T

[0]

�

�

�d
T

[0]

�

�

✓+1�n

. (62)

A direct consequence of Lemma 1 is that, for ✓ � 2n � 1,
we obtain

p
s,u

�

u
T

[✓]
�

�

u[✓ � 1]

�

= p
u

⇣

u
T

[✓]
�

�

�

�

u
T

[✓ � i]
 

n�1

i=1

⌘

(63)

which, in conjunction with Bayes’ rule, yields

p
s,u

�

u[✓]
�

p
s,u

�

u[✓ � 1]

�

= p
s,u

�

u
T

[✓]
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�

�

�

�

u
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n�1
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⌘

. (64)

By multiplying equations of the form (64) for ✓ = 2n �
1, . . . , k, we get

p

s,u

�

u[k]
�

p

s,u

�

u[2n� 2]

�

=

k

Y

✓=2n�1

p
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�

�

�

�

u

T
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n�1

i=1

�

.(65)

It is now easy to complete the proof by substituting the
numerator and denominator of the left-hand side in (65) by
the equivalent forms suggested by (62).

APPENDIX D
PROOF OF THEOREM 2

As developed in Appendix A, the characteristic form can
be used to generate the joint probability density functions. To
use (53), we need to represent u

T

[i] as inner-products with
the white process. This is already available from (19). This
yields

p

u

�

{u
T

[✓ � i]}k
i=0

�

=

F�1
{!
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}

n

ˆP
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.(66)
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From (3), we have
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dx. (67)

Using (24), it is now easy to verify that
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n�1
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i
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.(68)

The only part left to mention before completing the proof is
that

p
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⇣
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⌘ . (69)

APPENDIX E
WHEN DOES TV REGULARIZATION MEET MAP?

The TV-regularization technique is one of the successful
methods in denoising. Since the TV penalty is separable with
respect to first-order finite differences, its interpretation as a
MAP estimator is valid only for a Lévy process. Moreover,
the MAP estimator of a Lévy process coincides with TV
regularization only if  

T

(x) = � log p
u
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Thus, we can write
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By integrating (71), we obtain that f
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) + ⌘, where ⌘ is a constant. The key point in finding this
constant is the fact that f
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2 . Now, for the sampling period T , Equation (41)
suggests that
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where K
t

(·) is the modified Bessel function of the second
kind. The latter probability density function is known as
symmetric variance-gamma or symm-gamma. It is not hard
to check that we obtain the desired Laplace distribution for
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Fig. 9. The function  
T

= � log p

u

for different values of T after enforcing
the curves to pass through the origin by applying a shift. For T = 1, the
density function p

u

follows a Laplace law. Therefore, the corresponding  
T

is the absolute-value function.

T = 1. However, this value of T is the only one for which
we observe this property. Should the sampling grid become
finer or coarser, the MAP estimator would no longer coincide
with TV regularization. We show in Figure 9 the shifted
 

T

functions for various T values for the aforementioned
innovation where � = 1.
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of sparse Lévy processes,” to appear in IEEE Trans. Sig. Proc., doi:
10.1109/TSP.2012.2222394, 2012.

[32] M. Unser and T. Blu, “Generalized smoothing splines and the optimal
discretization of the Wiener filter,” IEEE Trans. Sig. Proc., vol. 53, no. 6,
pp. 2146–2159, Jun. 2005.


