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We study the metal–insulator transition in one-dimensional Anderson binary
alloy with long-range disordered hopping integrals and on-site energies using the
transfer matrix method. In this model, the on-site energies and hopping integrals
are distributed randomly with long-range correlations characterized by power
spectrum of the type S(k) ∝ 1/k(2α−1), with different exponents αε and αt ,
respectively. We determine the critical value of long-range correlation exponent
of hopping integral αtc in the presence of only off-diagonal disorder in which the
transition from localized to extended states occurs in thermodynamic limit. When
both of the on-site energies and hopping integrals are disordered, there are two
parameters αt and αε that control the metal–insulator transition in the system.
We draw the phase diagram which separates the localized regime from extended
one and it shows the critical values of αt for a given value of αε .

1. Introduction

In a pure periodic system, the electronic eigenstates are extended.[1] Disorder originating
from lattice imperfections drastically modifies the nature of the single electron eigenstates.[2]
In a one-dimensional disordered system, Anderson localization is known to occur at any
energy in thermodynamic limit when the disorder is uncorrelated and has white noise
structure.[2,3] The interest for one-dimensional disordered models with correlated disorder
has been started since 1990. It is found that spatial correlation of disorder can unexpectedly
create extended states at some energies. For instance, if one introduces particular short-
range correlations to the on-site disordered energies, e.g. in the random dimer model,[4]
delocalization of a subset of the eigenstates can appear.

These observations attracted a great attention to investigate the existence of Metal–
Insulator Transition (MIT) in low-dimensional disordered systems in the presence of cor-
related, especially long-range disorder.[5] Experimental evidence of delocalization caused
by such short-range correlations has been found in semiconductor superlattices.[6] In this
direction, De Moura and Lyra [7,8] considered the discrete Anderson model in which the
diagonal energies of the hamiltonian were generated by considering the potential as the trace
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of a fractional Brownian motion and they imposed a normalization condition that kept fixed
the variance of potentials for all system sizes (see also [9,10]). They showed how long-range
correlated sequences of on-site energies could result in a continuum of extended states ( see
also [11,12]). Long-range correlations also affect the level statistics of the system, which
can also experience a transition from Poissonian to non-Poissonian distribution.[13]

Several stochastic processes in nature are known to generate long-range correlated ran-
dom sequences which have no characteristic scale, for example, in the nucleotide sequence
of DNA molecules.[14] The relevance of the underlying long-range correlations for the
electronic transport in DNA was firstly pointed out in [15], and then other researchers have
confirmed this observation.[16,17] Indeed in DNA, the short- and long-range correlations
between base pairs provide valuable information to distinguish between almost random
distributions, and more complex sequences, whose long-range correlations might also be
associated with some biological properties.[14,18–25] Furthermore, the variation of the
temperature in the DNA induces structural disorder, and randomizes local hopping integral
between the base pairs. Noting to the fact that timescale of charge transfer process is much
faster than timescale of thermal fluctuations, then the disorder in hopping integral looks
like a quenched disorder. A binary model used here, is the simplest model to approach this
problem in the presence of randomness in hopping integrals and on-site energies for a quasi
one-dimensional systems.

Analytically, to understand the effect of long-range correlations of the disorder on
the MIT phase transition, Izrailev and Krokhin [26] derived perturbatively a relationship
between localization length and two points correlation of potential. They showed how
specific disorder with long-range correlations leads to the appearance of mobility edges
in one-dimensional discrete models. An experimental confirmation of these findings was
obtained by studying the transmission of microwaves in a single-mode waveguide with a
random array of correlated scatterers.[27] In addition, there have been several theoretical
and numerical studies of these problems in various systems.[28–47]

In this paper, we study one-dimensional Anderson model with long-range correlated
quenched disorder chosen as a binary model. In this model, with some probability, both of
the on-site energies and hopping integrals can have just two different values, for seeking sim-
plicity. We create long-range correlated binary models by generating a correlated sequence
of on-site energies and hopping integrals continuously distributed, which are mapped into
two different values. At first, we turn off the on-site disorder and calculate the localization
length of off-diagonal long-range correlated disordered system and show that there is a
critical value of correlation exponent in which the metal–insulator transition occurs in the
thermodynamic limit. When both of the on-site energies and hopping integrals fluctuate
around their mean values, the two parameters αt and αv identify the phase diagram of the
system. We plot a critical curve which separates the localized phase from extended one in
the two-dimensional phase space.

2. Model and method

We consider noninteracting electrons in one-dimensional disordered system within a nearest-
neighbor tight-binding formalism. In this model, we consider a single electron on a lattice
with N sites described by the following Hamiltonian [13]:

D
ow

nl
oa

de
d 

by
 [

sh
iv

a 
lo

tf
al

la
hz

ad
eh

] 
at

 1
2:

00
 3

0 
Se

pt
em

be
r 

20
14

 



Waves in Random and Complex Media 3

H =
N∑

i �= j

ti j |i〉〈 j | +
N∑
i

εi |i〉〈i |, (1)

where |i〉 denotes the Wannier state at site i . The Schrödinger equation projected on site i
becomes

εiψi + ti,i+1ψi+1 + ti−1,iψi−1 = Eψi (2)

where E is the energy of the incoming electron. The norm |ψi|2 is the probability of finding
an electron at site i , εi is the potential at site i and ti−1,i = ti,i+1 represents the hopping
element connecting the i th to the (i − 1)th site.

In this work, the disorder is applied both on the on-site energies {εi } and the hopping
terms {ti−1,i }.Abinary disorder is introduced for the on-site energies and the hopping terms.
Therefore, two potential energies are possible in any site, for instance: εi = +0.1 and −0.1
(with zero mean) and hopping terms between nearest sites will be ti−1,i = 0.9 and 1.1 (with
unit mean).

The Equation (2) can be easily expressed using the conventional transfer matrix method
as the following recursive matrix form [48]:(

ψi+1
ψi

)
=

(
t−1
i,i+1(E − εi ) −t−1

i,i+1ti−1,i

1 0

) (
ψi

ψi−1

)
. (3)

The wave functions of the two ends can be related together by calculating a product of
matrices as PN ,1 = ∏N

i=1 Pi,i−1. In this equation, N = L/a where L is the sample size, a
is the lattice constant and Pi,i−1 is the transfer matrix which connects the wave functions
of sites i and i − 1 as follows:

Pi,i−1 =
(

t−1
i,i+1(E − εi ) −t−1

i,i+1ti−1,i

1 0

)
. (4)

According to the component of this matrix, the Lyapunov Exponent is defined as:

γ = lim
N→∞

1

N
< ln ‖ PN ,1 ‖> . (5)

The localization length corresponds to the inverse of Lyapunov Exponent (ξ ∝ 1/γ ).
Now, let us study the localization properties of the binary model with long-range

correlated disorder. Thus, we need to first generate long-range correlated sequences of site
energies and hopping integrals. A sequence of long-range correlated sequence is produced
by the Fourier filtering method.[49] This method is based on a transformation of the Fourier
components {uk} of a random number sequence {ui }, which is uncorrelated random number
with a Gaussian distribution.Asequence of {ηk} is generated for a given α using the relation:
ηk = k−(2α−1)/2uk . Inverse Fourier transformation of sequence {ηk} leads to the sequence
of interest {ηi }. The resulting sequence of data is spatially correlated with spectral density

S(k) ∝ k−(2α−1) (6)

and the constructed data follow a Gaussian distribution. The exponent α is called correlation
exponent, and it quantifies the degree of correlation imposed in the system. Now the
sequences of {εi } and {ti } in the binary alloy are produced by applying a map on the correlated
sequences {ηi }. Every positive and negative values of {ηi } are mapped into εi = +0.1 and
εi = −0.1, respectively. In the same way, for generating the set of hopping integrals {ti },

D
ow

nl
oa

de
d 

by
 [

sh
iv

a 
lo

tf
al

la
hz

ad
eh

] 
at

 1
2:

00
 3

0 
Se

pt
em

be
r 

20
14

 



4 S. Lotfallahzadeh et al.

−2 −1 0 1 2

10
4

10
5

10
6

10
7

E

 

 

0 5 10

1.5

1.55

N

cr t

 

 
t
=1.2

t
=1.3

t
=1.4

t
=1.54

x105

Figure 1. Localization length of off-diagonal correlated disordered as a function of electron energy
for different values of correlation exponents. The system size is fixed to N = 106. The averages
are obtained using 5000 realizations of randomness. Inset shows the critical value of off-diagonal
correlation exponent as a function of system size N .

we map every positive and negative values of {ηi } into ti = 0.9 and ti = 1.1, respectively.
Such a mapping of course can change the correlation properties of the series; and therefore,
the correlations are not properly quantified by the power-law exponents as the original
correlated series. To quantify the correlations in the final binary sequence, we calculate the
scaling exponent α using detrended fluctuation analysis, which is one of the most widely
used method to quantify long-range correlations.[50–52] We note that the exponent α = 0.5
corresponds to uncorrelated disorder (white noise), while the caseα > 0.5 indicates positive
correlations. Once the sequence of numbers is generated, we normalize them so that the
mean value 〈ηi 〉 is set to zero, and the variance is set to unity. This choice is maintained in
all the numerical calculations in this paper.

3. Numerical results

In the numerical calculations, the localization properties and the possibility of the existence
of a phase transition from localized to extended states are investigated in the band center. For
a given system size N , there are two parameters which control the localization length of the
system, the on-site potential correlation exponent αε and the hopping integrals correlation
exponent αt . In all the cases considered below, we calculate the localization length ξ as a
function of energy E for the finite system size N and for different values of the correlation
exponents imposed in the system. When the localization length starts to be greater than the
system size ξ ≥ N , we say that a transition from localized states (insulator) to extended
states (metal) is observed for the finite system size. The α value at which the transition is
detected for a fixed N is called αc(N ).
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Figure 2. Localization length of the system as a function of energy for different values of on-site and
hopping correlation exponents. The size of the system is fixed to N = 106. The averages are obtained
using 10,000 realizations.

Let us first turn off the disorder in on-site energies. Figure 1 shows the localization
length of the system with size N = 106 as a function of the energy E for different values
of αt . In this figure, the on-site energies have the same values and fixed to εi = 0. So only
the off diagonal disorder is imposed in the system with different correlation exponents.
As shown in this figure, the localization length increases with increasing the correlation
exponent αt and the metal–insulator transition occurs for αcr

t � 1.54.
In order to find the critical value of the correlation exponent hopping integrals αcr

t in
thermodynamic limit, we plot αcr

t as a function of system size N in the inset of Figure 1.
According to this figure, the higher size of system needs the larger correlation exponent αcr

t
to experience a phase transition. Also, as shown in this figure, αcr

t has an asymptotic value
at large N and converge to limN→∞ αcr

t ≈ 1.58. Similar result has been found for critical
exponent of on-site energies correlation (with ordered hoping integrals) in [15], where the
exponent converges to limN→∞ αcr

ε = 1.45 in the thermodynamic limit.
Up to now, we have described the transition from localized to extended states in the

presence of long-range correlated off-diagonal disorder in the system. When also the
diagonal disorders are turned on, we observe that the localization length decreases and
the transition from extended states to localized states occurs; therefore, the system will be
an insulator as shown in Figure 2. Figure 2 shows that, for example, with αt (= 1.8) >
αcr

t (≈ 1.58) and for αε = 1.35, where all the stats are localized. Also, for a fixed αt ,
localization length increases with increasing αε and vice versa. Therefore, there are two
parameters αt and αε that control the metal–insulator transition in the system.

In Figure 3, we plot the critical values of αt as a function of αε. As shown in this figure,
there is a critical curve which separates the localized regime from extended one. For all
of the calculations in this figure, the average of the localization length is obtained in the
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Figure 3. Phase diagram separating localized from extended states is shown in terms of the hopping
integral correlation exponents αt and on-site correlation exponents αε . The system size set to
N = 5 × 106. The inset shows the finite size scaling of localization length with system size N .
For extended states, the localization length scales with system size as ξ(E ∈ extended− states) ∼ N .

energy region −� ≤ E ≤ � with finite and small � (with � = 0.1) and for the system
size N = 5 × 106.

Finally, we would like to point out that the phase transition condition should be generally
defined as ξ ∝ Nβ , where β = 1 and β < 1 correspond to extended and localized states,
respectively. Therefore, we guarantee that in the thermodynamic limit, the localization
length diverges with system size. As shown in the inset of Figure 3, we plot the localization
length of the system as a function of N for two distinct points in phase space, i.e. αε = 1.55
and αt = 1.62, within the extended and localized regions as shown in the phase diagram.
In the case of αε = 1.55 and αt = 1.6, the point inside the localized phase, we find
β ≈ 0.95 < 1. However, for αε = 1.55 and αt = 1.67, the point inside the extended
phase, we find β ≈ 1. Consequently, the finite size scaling confirm the extended nature of
exponents belong to the extended area in phase space.

We note that the phase diagram can change with the values of on-site energies εi and
hopping terms between nearest sites ti−1,i . The general rule is that, for higher values of
binary difference (which we have chosen �εi = 0.2 and �ti = 0.2), one needs to have
larger values for the exponents. In other words, to have higher probability to cross the
barriers with �εi in on-site energies and �ti in hopping integral, the lager exponents that
are more correlated are needed.

4. Conclusion

In summary, we have studied a one-dimensionalAnderson model with long-range correlated
disorder when disorder has been imposed in hopping integrals and on-site energies. The
model is a binary alloy in which on-site energies and nearest sites hopping integrals are
mapped into two values. The localization length of this system increases with increasing
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Waves in Random and Complex Media 7

the correlation exponents of both on-site and hopping integrals. We show that there is a
metal–insulator transition when the correlation exponent increases, and there is a phase
diagram which separates the localized regime from the extended one in terms of the two
correlation exponents of the system.
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