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Metal-insulator transition in three-dimensional Anderson superlattice with rough interfaces
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We study the electronic properties of superlattice with rough interfaces in two and three dimensions using the
transfer-matrix method and direct diagonalization of the Anderson Hamiltonian. The system consists of layers with
an average constant width, but with stochastic roughness added to the interfaces between the layers. The numerical
results indicate that, in the thermodynamic limit, the two-dimensional superlattice is an insulator in the presence of
even small roughness. In three-dimensional systems, however, the superlattice exhibits a metal-insulator transition
with a well-defined mobility edge located at an energy Ec that we compute numerically. For three-dimensional
superlattice, the localization length follows a power law near the mobility edge ξ (E) ∼ (Ec − E)−ν , where the
exponent is ν � 1.6. We also show that the existence of the extended states in three-dimensional superlattices
gives rise to a finite conductivity in the limit M/L → ∞, where L is the length and M the width of the bar.
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An important problem in the fabrication of electronic and
optical instruments is the existence of interface roughness. The
roughness limits the efficiency of optoelectronic devices, and
it is essential for the functionality of the quantum wells and
the superlattices. The theory of electron and wave scattering
from rough interfaces has been developed in Refs. 1 and 2.
The influence of interface roughness on electronic transport
properties has been studied extensively in GaAs/AlGaAs
heterostructures,3–7 where the validity of the theory has been
confirmed.

A thorough understanding of the nature of heterointer-
faces is essential to correlating interface roughness with
the optoelectronic properties of complex systems, such as
superlattices whose structures are composed of alternating
layers of two or more materials arranged either randomly or
periodically.8 They are of interest due to their applications
in such devices as semiconductor lasers,9,10 optical data-
storage media,11 thermoelectric systems,12–15 thermomechanic
systems,16 microelectronic systems,17 graphene,18 composite
films,19 etc.

Electronic properties of multilayered semiconductor su-
perlattices have been investigated by many researchers over
the past decades. Esaki and Tsu20 proposed the concept of
semiconducting superlattices, and they suggested the possibil-
ity of obtaining experimental evidence of Bloch oscillations
in a superlattice structure. In electronic transport studies
of superlattices, it is usually assumed that the system is
structurally perfect. When a superlattice is grown, however,
due to the random nature of the growth techniques, disorder
such as interface roughness is generated in the system.21 It is
also known that interfacial roughness plays an important role
in the thermal conductivity of superlattices.22–27

Here, we focus on the role of interfacial roughness on the
electronic properties of superlattices. Using the transfer-matrix
(TM) method and direct diagonalization of the Hamiltonian,
we show that interface roughness greatly influences electronic
transport in two-dimensional (2D) and 3D superlattices. Our

numerical results indicate that, in the thermodynamic limit,
the 2D system is an insulator in the presence of even small
interfacial roughness. In 3D systems, however, the superlattice
exhibits a metal-insulator transition with a well-defined mobil-
ity edge that our simulations identify at the energy Ec � ±4.9.
We also show that the existence of extended states in 3D
superlattices with rough interfaces gives rise to a finite dc
conductivity in the limit M/L → ∞.

Let us start with the Anderson model for 2D systems. We
use the nearest-neighbor tight-binding model, defined by

ψn+1,m + ψn−1,m + ψn,m+1 + ψn,m−1 = (E − εn,m)ψn,m.x

(1)

Equation (1), which is extended to 3D systems straight-
forwardly, is the discrete version of the model defined by
Hψ = εψ , where E = 4 − 2ma2

h̄2 ε is the shifted energy and
ε is the eigenvalue of the Hamiltonian. The function ψn,m

denotes the amplitude of the wave function at site (m,n) of
the lattice with a lattice constant a, which we set to be unity.
We then consider a multilayered or superlattice structure with
rough interfaces between the layers. The geometry of the 2D
superlattice is shown in Fig. 1. It consists of two kinds of
alloys, say A and B. There are two on-site energies in any layer,
namely εn,m = εA or εn,m = εB . We set εA = 1 and εB = −1.

The ordered superlattice without interface roughness is
transparent. In practice, however, the surface between ma-
terials A and B is not flat but rough. To model the rough
interfaces in, for example, 2D superlattices, we use a white
noise disorder to generate the roughness at the interfaces
between the layers. The width of each layer in the superlattice,
such as, for example, in the x direction (horizontal direction
in the figure), is W . In each layer we add a randomly
selected value δ(x,y) to the average position of the nth layer,
i.e., x(n,y) = nW + δ(x,y), where δ(x,y) is a random and
uncorrelated stochastic variable with zero mean, distributed
uniformly in the interval [−σ,σ ]. This means that if the on-site
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FIG. 1. (Color online) The geometry of a superlattice in 2D.
Different colors relate to a different medium in the superlattice. The
average width of each layer in the superlattice is W . In each layer
we add a randomly selected value δ(x,y) to the average position of
the nth layer, i.e., x(n,y) = nW + δ(x,y), where δ(x,y) is a random
and uncorrelated (white noise) stochastic variable with zero mean,
distributed uniformly in the interval [−σ,σ ]. The on-site energy in
the nth layer is εA = 1, and in the (n + 1)st layer it will be εB = −1.

energy in the nth layer is εA, then the on-site energy in the
(n + 1)st layer will be εB . Adding randomness at the interface
between layers with εA and εB causes the penetration of two
regions into each other, as shown in Fig. 1. Hence, the disorder
in the superlattice, which is the roughness of the interfaces
between the layers, is generated by the stochastic variable
δ(x,y) with its strength controlled by σ .

Numerical simulations were carried out for 2D strips as well
as 3D bars. Using the TM method, we computed the smallest
positive Lyapunov exponent γ , the inverse of the localization
length. Equation (1) is rewritten as a recursive equation,(


k+1


k

)
=

(
EI − Hk −I

I 0

)(

k


k−1

)
= Tk

(

k


k−1

)
,

(2)

where Tk is the TM for the kth layer and 
k is the vector
that contains the values of ψ in Tk , and so on. The rough
superlattice is represented by an M × L strip in 2D and an
M × M × L bar in 3D, with periodic boundary conditions,
where M is the width and L is the longitudinal length. Every
element in the TM is a 2M × 2M matrix in 2D and a 4M2 ×
4M2 matrix in 3D. The Hk is the sub-Hamiltonian of the kth
part. By specifying the initial values of 
 in the first and second
lines of the strip in 2D and the first and second planes of the
bar in 3D, we compute the amplitude of the wave function at
length L by multiplying all of the TMs.

The Lyapunov exponents are the logarithm of the eigen-
values of the matrix (TTt)1/2L, where t denotes the transpose
operation, and T = ∏L

k=1 Tk .28 Using the TM, we computed
the smallest positive Lyapunov exponent γ , which represents
the inverse of the localization length. The Lyapunov exponent
is a measure to describe the localization properties of the
disordered systems. It characterizes the exponential decay
of the wave function, satisfies a multiplicative central limit
theorem, and approaches a nonrandom value, γ , when the size
of the system tends to infinity.29 The localization length ξ (E)
of a state with a given energy E is related to γ as ξ (E) = γ −1.

The number of the Lyapunov exponents is N = 2M for 2D
systems and N = 4M2 for 3D superlattices. The simulations
begin by N orthogonal initial vectors, followed by the Gram-
Schmidt (GS) orthogonalization after every four steps of the

0 1 2 3
0

5

10

15

20

25

E

ξ/
M

 M = 50

σ = 4
σ = 10

FIG. 2. (Color online) Rescaled localization length of a two-
dimensional superlattice as a function of energy for two values of
the strength of roughness.

TM iteration. The reason for the use of the GS orthogonal-
ization is that, after some iterations, the directions of all the
vectors change to the direction of the vector that corresponds
to the largest Lyapunov exponent. Use of orthogonalization
enables us to determine the smaller Lyapunov exponents,
particularly the smallest one. The iterations are continued
until an acceptable relative accuracy is achieved for the
rescaled localization length, � = ξ/M . Finite-size scaling of
� identifies the localized and delocalized states. Increasing
the width of the strip or the bar affects the behavior of � for
different energies.

For given energy and the strength of roughness, � either
increases, indicating that the state is delocalized, or decreases,
implying that the state is localized. Therefore, using such
properties of the rescaled localization length, we distinguish
the extended states from the localized ones, as well as the
metal system from the insulator regime.
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FIG. 3. (Color online) Variation of the rescaled localization
length with respect to the width of the system M for two energies
and for a superlattice with the roughness strength σ = 5 in two
dimensions.
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FIG. 4. (Color online) Rescaled localization length as a function
of the strength of roughness for two values of energies and for two
widths M in a two-dimensional superlattice.

Let us now present the numerical results. Using direct
diagonalization, we estimated the allowed energies of the
system, which are needed in the TM method in order to
calculate the localization length. We found that the energy
interval belongs to −5 � E � 5 in the 2D system and to
the interval −6 � E � 6 in the 3D superlattice. For a 2D
superlattice with flat interfaces, the energy interval is in [−4,4].

We then calculated the localization length ξ as a function
of energy E in the presence of roughness at the interfaces
between the layers. Figure 2 presents the rescaled localization
length ξ/M in 2D in terms of the energy E for two values of
the strength of roughness, σ = 4 and 10. The width of the strip
is M = 50, while the width of each layer is W = 16. Figure 2
is plotted only for energies in the range (0,5), but the results
are similar in the range (−5,0).

Figure 3 depicts the dependence of the rescaled localization
length on the width M of the strip for two energies, E = 2
and 0.5, in two dimensions. The rescaled localization length
decreases by increasing the width of the bar, indicating that the
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FIG. 5. (Color online) Rescaled localization length of a three-
dimensional superlattice as a function of energy for two widths M

and for the strength of roughness σ = 20.

two energies are localized. Here, the strength of the roughness
is σ = 4 and the width of each layer is W = 16. Then, for
fixed energy E and width M , we varied the strength σ of the
roughness. Figure 4 depicts the dependence of the rescaled
localization length on the strength of roughness for several
energies and widths of the 2D strip. These results indicate
that the localization length does not decrease if the strength of
the roughness increases for some energies. However, for both
energies E = 2 and 0.5 and for all roughness strengths σ , the
rescaled localization length decreases by increasing the width
of the strip, which is consistent with the results of Fig. 3. We
conclude as a result that the 2D superlattices are an insulator in
the presence of even very small white noise in the interface’s
roughness. This is one of the main results of this paper.

We now present the numerical results for a 3D superlattice.
Figure 5 shows the rescaled localization length versus energy
for various widths of the bar for a roughness strength of σ =
20, when the width of each layer is W = 50. In this case,
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FIG. 6. (Color online) (a) Conductivity as a function of the
aspect ratio of the system for a vanishing chemical potential μ.
The thermodynamic limit is defined as M/L → ∞. We note that
this limit is reached for moderate aspect ratios M/L � 6. The
dc conductivity is given for the strength of disorder σ = 20. The
conductivity approaches �0.13(e2/h) in the thermodynamic limit.
(b) The μ dependence of the conductivity for a fixed aspect ratio
M/L = 6.
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there exist two different behaviors for � when the width M

of the bar increases. For low energies, � increases, which is
related to the delocalized states, whereas for high energies the
rescaled localization length decreases, indicating that the states
are localized. The energy Ec ≈ 4.9 represents the mobility
edge, which is scale-invariant and is the critical energy. Thus,
the rescaled localization length undergoes a phase transition
in the presence of roughness in a 3D superlattice with rough
interfaces. The inset of the figure presents the behavior of
the rescaled localization length close to the critical energy,
proving the existence of the metal-insulator transition in 3D
superlattices with rough interfaces. Using the method used in
Ref. 30, one can show that for a three-dimensional superlattice,
the localization length follows a power law near the mobility
edge ξ (E) ∼ (Ec − E)−ν , where Ec is the critical energy. We
find the scaling exponent to be ν = 1.60 ± 0.05. We note that
the estimated critical exponent is the same as that of the the
3D Anderson model with random binary disorder31 and it is
also close to ν = 3/2, which was recently derived based on a
semiclassical theory for the 3D Anderson model of electron
localization.32

Having calculated the localization length, we computed the
dc conductivity of the superlattice in 3D and determined its
dependence on the chemical potential μ.33,34 The conductivity

� = G × L/M2 as a function of the aspect ratio of the system
(at 300 K) is given in Fig. 6(a) for a vanishing chemical
potential μ. The conductance G was calculated using the
Engquist-Anderson relation.33 Here, the thermodynamic limit
is defined by the limit M/L → ∞.35 We note that this limit
is already reached for moderate aspect ratios, M/L � 6. The
dc conductivity is given for the strength of disorder, σ = 20.
It approaches �0.13(e2/h) in the thermodynamic limit. In
Fig. 6(b), we plot the μ dependence of the conductivity for a
fixed aspect ratio M/L = 6. The conductivity has a maximum
in the limit μ = 0.

In summary, we studied 2D and 3D superlattices with rough
interfaces. We showed that 2D superlattices are localized for
any strength of roughness. It was shown by increasing the
strength of roughness that the localization length may increase
or decrease, depending on the energy E. In the thermodynamic
limit, however, the system will be an insulator. We proved that
there exists a metal-insulator transition in 3D superlattices with
rough interfaces, and we determined the mobility-edge energy.
For three-dimensional superlattices with rough interfaces, the
critical exponent that characterizes the power-law behavior of
the localization length near the transition point is about ν � 1.6.
We also computed the dc conductance of a 3D superlattice and
its variations with the chemical potential.
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