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Abstract

We consider perturbation of a conformal field theory by a pair of relevant logarithmic operators and calculate the beta
function up to two loops. We observe that the beta function can not be derived from a potential. Thus the renormalization
group trajectories are not always along decreasing values of the central charge. However there exists a domain of structure
constants in which the c-theorem still holds. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

An important theorem was put forward by Za-
malodchikov regarding the perturbation of confor-

Ž .mally invariant field theories CFT , which is known
w xas c-theorem 1 . The c-theorem states that there

exists a function C, of the coupling constants which
is non-increasing along the trajectories of the renor-
malization group and its stationary points coincide
with the fixed points of the renormalization group.
At these fixed points C takes the value of the central
charge.

On the other hand it is interesting to investigate
the validity of the Zamalodchikov‘s theorem beyond
its original domain. One such group of theories are

Ž .the logarithmic conformal field theories LCFT . It
w xhas been shown by Gurarie 2 that CFTs exist in

which at least two primary fields have equal confor-
mal dimensions. Such a pair then have logarithms in
their correlation functions.

Ž .The Logarithmic fields operators in CFT were
w xfirst studied by Gurarie in the csy2 model 2 .

After Gurarie, these logarithms have been found in a
multitude of other models such as the WZNW-model

Ž . w xon the GL 1,1 3 , the gravitationally dressed CFTs
w x w x4 , c and non-minimal c models 2,5–7 , criti-p,1 p,q

w xcal disordered models 8,9,35 , and the WZNW mod-
w xels at level 0 10,11 . They play a role in the study of

w xcritical polymers and percolation 5,6,12,13 , 2D-
w x wturbulence 14–18,36 and quantum Hall states 19–

x21 . They are also important for studying the prob-
lem of recoil in the string theory and D-branes
w x10,22–25 , as well as target space symmetries in

w xstring theory 10 . The representation theory of the
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w xVirasoro algebra for LCFT was developed in 26 .
The origin of the LCFT has been discussed in
w x27,28,34 .

Perturbing a stable fixed point by logarithmic
operators has many repercussions. Firstly logarithmic
operators come in at least pairs of relevant operators,
thus one always has to deal with a system of equa-
tions in renormalization flow trajectories. Secondly
the logarithmic response changes the renormalization
flow. Thirdly non-unitarity causes negative norms
and this may affect the c-theorem.

Unitarity is a prerequisite of the c-theorem and
one may expect a break down of the c-theorem for
non-unitary theories. Although most realizations of
LCFT’s so far have been non-unitary, but unitary

w xLCFT’s may also exist 11 . Therefore c-theorem
within the context of LCFT’s is interesting from two
different points of view; it may hold under certain
conditions even for non-unitary LCFT’s, it restricts
the unitary LCFT’s.

2. The c-theorem

The proof of the c-theorem is based on conserva-
tion of the energy- momentum tensor and positivity,

w xhere we follow the proof given by Cardy 29 . In two
dimensions the energy-momentum tensor has three
independent components,

TsT , TsT , UsT 1Ž .z z z z z z

At a fixed point the theory is conformally invari-
ant, the beta function vanishes and Us0. Thus T
depends solely on z and T on z. The conservation of
the energy-momentum tensor results in:

1 1E Tq E Us0 E Tq E Us0 2Ž .z z z z4 4

We are concerned with the perturbation of a fixed
point Hamiltonian by an operator F :

HHsH qgF 3Ž .
)

The renormalization flow of the coupling constant
g is then given by calculating the change in the
correlation functions of the theory perturbatively:

² : ² : ² :PPP s PPP qg F PPP 4Ž .
) H

We can now use the operator product expansion
Ž .on the rhs. of Eq. 4 :

h 1yh
T z F z s F z q EF zŽ . Ž . Ž . Ž .1 2 zyzzyzŽ . 11

5Ž .

Ž .We observe that the rhs of Eq. 4 is divergent
thus needs regularization. Consequently E T no longerz

vanishes and we find:

E syp 1yh E F 6Ž . Ž .zT z

then the conservation of the energy-momentum
tensor implies that:

Usy4p g 1yh F 7Ž . Ž .

Here U is the response of the action to the scale
transformation z™l z. This is valid all the way
along a trajectory leaving a fixed point until another
fixed point is reached. At the second point the UV
behaviour changes. Let us consider the flow from a
UV fixed point, to a relatively IR fixed point. Given
the spin structure of the three components of energy-
momentum tensor, the following holds:

F zz G zzŽ . Ž .
² : ² :T z T 0 s , T z T 0 s ,Ž . Ž . Ž . Ž .4 4z z

H zzŽ .
² :U z U 0 s 8Ž . Ž . Ž .

2 2z z

using the conservation of the energy-momentum ten-
Ž Ž ..sor i.e. Eq. 2 , we have

1 1˙ ˙ ˙ ˙Fq Gy3G s0, GyGq Hy2 H s0Ž . Ž .4 4

9Ž .
X 3˙ Ž .where FszzF zz . Defining Cs2 FyGy H,8

we have

3Ċsy H 10Ž .4

Now in unitary theories we have H)0, thus C is
a non-decreasing function, and it is stationary only
when U is zero, that is at the conformally invariant
points. Furthermore the quantities G and H vanish
at the fixed point and Fscr2, thus we have Csc.
This proof can be easily extended to the case of
more than one operator.
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3. The logarithmic conformal field theories

In its simplest version a logarithmic field theory is
characterized by a pair of fields which mix due to a
scale transformation:

F z ™lyxF z 11Ž . Ž . Ž .
C z ™lyx C z y log l F 12Ž . Ž . Ž . Ž .Ž .
Note that formally one can think of C as derivative

w xof F with respect to x 28,30,34 . The OPE with the
energy momentum tensor likewise changes:

hF 1yh
T z F z s q EF 13Ž . Ž . Ž .1 2 zyzŽ .zyzŽ . 11

hC F
T z C z s qŽ . Ž .1 2 2zyz zyzŽ . Ž .1 1

1yh 1
q ECy EF

zyz zyzŽ . Ž .1 1

14Ž .

The consistency of invariance under the action of
Virasoro algebra generators requires the two-point
functions of C and F to have an unusual form:

² :F z F 0 s0 15Ž . Ž . Ž .
² : y2 xF z C 0 sbz 16Ž . Ž . Ž .
² : y2 xC z C 0 sz dy2blog z 17Ž . Ž . Ž . Ž .Ž .
where b and d are constants. It is this above prop-
erty which has an important bearing on the c-theo-
rem. We perturb the fixed point Hamiltonian HH by

)

a pair of operators C and F using two coupling
constants g and g :1 2

HHsH q d2 z g Fqg C 18Ž . Ž .H
) 1 2

To make the coupling constants dimensionless, and
Ž .also maintain the invariance given by Eqs. 11,12 ,

we rewrite the above expression as follows:

HHsH q d2 z g aŽ xy2.CqG aŽ xy2.F 19Ž .Ž .H
) 2 1

where a is the lattice constant and the coupling
constant G is:1

G sg q log a g 20Ž . Ž .1 1 2

Ž .The function C g , g now can be calculated1 2
Ž .using the two point functions and Eq. 7 as:

C g , g sc) y6p 2 2 g g 2yx byg 2 bŽ . Ž .Ž1 2 1 2 2

qg 2 2yx d 21Ž . Ž ..2

Clearly C does not always decrease as result of a
change in scale, but it does if the following condition
holds:

2 2yx g ) byd 2yx g 22Ž . Ž . Ž .Ž .1 2

² :This in turn holds if x 2, g 0, g )0 and:1 2

bsd 2yx 23Ž . Ž .
To calculate the renormalization flow we need the
OPE coefficients. Up to two loops, the result of

w xordinary CFT still holds 29 provided we replace g1

with G :1

g s 2yx g yp c jk g g 24Ž . Ž .˙i i i i k j

Note that in LCFT the structure functions depend
Ž .on log r through logarithmic terms and one has to

take care when applying the above equation. To
proceed further we need the OPE of the fields F and

w xC 28,34 :

F z F 0 s PPP qzyx AyBlog z F 0Ž . Ž . Ž . Ž .Ž .
qBzyxC 0 25Ž . Ž .

F z C 0 s PPP qbzy2 xŽ . Ž .

qzyx Dy AyE log zŽ . Ž .Ž
2yB log z F 0Ž . Ž .Ž . .

qzyx EyBlog z C 0 26Ž . Ž . Ž .Ž .
C z C 0 s PPP q dy2blog z zy2 xŽ . Ž . Ž .Ž .

qzyx Gy 2 DyK log zŽ . Ž .Ž
2q Ay2 E log zŽ . Ž .Ž .

3qBlog z F 0Ž . Ž ..
qzyx Ky2 Elog zŽ .Ž

2qBlog z C 0 27Ž . Ž . Ž ..
Here we have assumed that the 1-point functions of
fields with zero conformal dimension vanishes, but
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this is need not be the case in nonunitary theories.
The operator product expansion may change if this
assumption is removed, and thus the renormalization
flow will change. we shall deal with this case in a
future work.

After some algebra we obtain the renormalization
flows:

g s 2yx g yg yp Ag 2 yp Gg 2 y2p Dg gŽ .˙1 1 2 1 2 1 2

q PPP 28Ž .
g s 2yx g yp Kg 2 y2p Eg g yp Bg 2Ž .˙2 2 2 1 2 1

q PPP 29Ž .
These equations clearly do not admit a potential, and
even at the one loop approximation they have a
Jordan form and cannot be diagonalized.

Ž .However the UV fixed point g sg s0 is a1 2

stable point depending on whether 2yx is positive
or not, in non-unitary theories, x is negative thus the
UV point is always unstable. Although a potential
does not exist it may still be that the flow minimizes
some function such as C as defined above. However
a one loop calculation of C has indicated that C is
not always decreasing.

4. Discussion

The above results can easily be generalized to the
case where the Jordan cell has more than two mem-
bers. If the Hamiltonian is perturbed by more than
two logarithmic fields:

N

HHsH q F 30Ž .Ý
) a

as1

we then derive the following 1-loop equations:

g s 2yx g 31Ž . Ž .˙N N

g s 2yx g yg 32Ž . Ž .˙Ny1 Ny1 N

and

g s 2yx g y Ny1 g 33Ž . Ž . Ž .˙1 1 2

To summarize we observe that the c-theorem
does not always hold in logarithmic conformal field
theories, but under certain conditions it may hold.
When dealing with non-unitary theories this is not a

disaster, but if we find unitary LCFT’s this result
will put a restriction on their structure constants.
Some authors have discussed the validity of the

w xc-theorem in a wider context 5,31–33 it may be
that a different definition of C, is necessary to cover
cases such as disorder. We also observe that LCFT’s
can be formulated in terms of nilpotent parameters
w x34 , we suspect that the above analysis should have
a transparent form if expressed in this terminology,
work in this direction is under progress.
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