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A novel combination of discontinuous molecular dynamics and the Langevin equation, together with
an intermediate-resolution model of proteins, is used to carry out long �several microsecond�
simulations in order to study transport of proteins in nanopores. We simulated single-domain
proteins with the �-helical native structure. Both attractive and repulsive interaction potentials
between the proteins and the pores’ walls are considered. The diffusivity D of the proteins is
computed not only under the bulk conditions but also as a function of their “length” �the number of
the amino-acid groups�, temperature T, pore size, and interaction potentials with the walls.
Compared with the experimental data, the computed diffusivities under the bulk conditions are of
the correct order of magnitude. The diffusivities both in the bulk and in the pores follow a power law
in the length � of the proteins and are larger in pores with repulsive walls. D+ /D−, the ratio of the
diffusivities in pores with attractive and repulsive walls, exhibits two local maxima in its
dependence on the pore size h, which are attributed to the pore sizes and protein configurations that
induce long-lasting simultaneous interactions with both walls of the pores. Far from the folding
temperature Tf, D increases about linearly with T, but due to the thermal fluctuations and their effect
on the proteins’ structure near Tf, the dependence of D on T in this region is nonlinear. We propose
a novel and general “phase diagram,” consisting of four regions, that describes qualitatively the
effect of h, T, and interaction potentials with the walls on the diffusivity D of a protein. © 2009
American Institute of Physics. �DOI: 10.1063/1.3080770�

I. INTRODUCTION

In Part I of this series1 we studied folding and stability of
proteins in slitlike nanopores using discontinuous molecular
dynamics �DMD� simulations. We considered the effect of a
variety of factors on protein folding and stability, including
the pore and protein sizes, the nature of the interaction be-
tween proteins and the pore walls �repulsive as well as at-
tractive�, and the temperature. In the present paper we study
diffusion of proteins in the same slitlike nanopores, investi-
gate the effect on transport of proteins of the same factors
that affected their folding and stability, and link the results
with those presented in Part I.

While the three-dimensional �3D� structure of native
proteins is controlled by their amino-acid sequence,2–4 the
kinetics of their folding, as well as the rate of their transport,
especially in confined media, depend on the local environ-
ment. Part I studied the folding and stability of proteins in a
slit nanopore. However, although diffusion of proteins in di-
lute solutions under bulk condition is relatively well under-
stood, the important phenomenon of protein transport in a
confined medium is not. Such understanding is essential to
important industrial applications that involve protein trans-
port in small pores. For example, applications of
biocatalysts5 and biosensors entail much better understand-
ing of the confinement effect on the rate of protein transport.

Moreover, protein purification using nanoporous membranes
is also attracting attention in the pharmaceutical industry.6

Rosenbloom et al.7 fabricated silicone-carbide �SiC� nano-
porous membranes8 and showed them to allow diffusion of
proteins up to 29 000 Da but not larger.

Aside from the aforementioned industrial applications,
transport of proteins across nanoporous biological mem-
branes is also of fundamental importance to life processes. If
a protein molecule is large but the membranes’ pores are
small enough that the protein is not allowed to pass through
as a single unit, one has the phenomenon of translocation—
i.e., squeezing—of the protein through the pores.9 Transloca-
tion is important to gene therapy,10 drug delivery,11 passage
of proteins through the endoplasmic reticulum12 and of RNA
through the nucleus pore membrane, DNA plasmid transport
from cell to cell through the walls,9 and transport of the
polypeptide chain from inner mitochondrial and chloroplast
membrane through its matrix.13

An important and experimentally accessible14 quantity in
such studies is15 the dwell time—the typical time that a pro-
tein, or any other biopolymer such as DNA or RNA, spends
in the nanopore and its dependence on the molecular weight,
the pore’s length, and other parameters. In general, one has
two dynamics: in slow translocation the protein remains
equilibrated at almost all the times on both sides of the pore,
whereas fast translocation allows the protein to pass through
the pore. Several mechanisms may induce the
translocation.13 For example, one is based on an externala�Electronic mail: moe@iran.usc.edu.
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electric field applied across the membrane, which has been
studied by in vitro experiments, as well as theoretically and
by Monte Carlo simulations.16–19 Another mechanism uses a
chemical-potential difference across the membrane, as there
is usually no in vivo strong electric field in such
membranes,20 an example of which is experiments on
chaperone-assisted translocation of proteins.9,13,21

The protein transport in nanopores that we study in this
paper is different from translocation in that, in our study
there is no electric field or external potential gradient applied
to the pore system. Thus, transport of the proteins takes place
by diffusion only. The present study represents the first step
toward a comprehensive study of transport of proteins in
tight pores in the presence of an external field, which is
currently under study by our group. We report on the simu-
lation of protein diffusion in nanopores and study the effect
of the pore size, temperature, proteins’ length, and nature of
the interaction between proteins and the pore walls on the
diffusion process. Although, as pointed out in Part I, limited
Monte Carlo and MD simulations of protein dynamics in
various models of nanopores have been carried out before, to
our knowledge MD simulation of diffusion of proteins in
nanopores has not been undertaken before. To carry out the
simulation, we propose a new method for taking into account
the effect of the interaction between proteins and the solvent
in the pore.

Diffusion of biopolymers in confined media has been
studied extensively22–30 in the past. In particular, transport of
such biopolymers such as RNA and DNA has been studied
extensively.28–30 Simulation studies of this kind usually as-
sume the biopolymers to be flexible chains without any spe-
cific atomistic structure or assume the biopolymers to have a
rigid structure without considering their atomistic details.
Such details do, however, affect the interaction of a biopoly-
mer with a pore’s walls. In particular, the atomistic details of
proteins’ structure are important in computing their diffusiv-
ity in confined media at temperatures near the folding tem-
perature Tf, where the proteins’ structure is neither com-
pletely rigid nor completely flexible. In fact, as described in
Part I, at such temperatures the interaction of proteins’ atoms
with the pores’ walls is very important, as it affects the fold-
ing dynamics, as well as the folding temperature itself.

Some simulation works on diffusion of proteins �or pro-
teinlike polymers with a compact structure at low tempera-
tures� in confined media have been reported,31 which did
include some details of the protein structure, with the aim of
realistically capturing the effect of the interactions with the
walls on the protein’s diffusivity. However, including the de-
tails of the atomistic structure of a protein is only half the
“story.” The other half is the need for including the effect of
the solvent. Doing so realistically in any molecular simula-
tions would entail very intensive computations, and even
then only time scales on the order of nanoseconds may be
realized, unless one uses massively parallel computations.32

The rest of this paper is organized as follows. In the next
section we describe briefly the protein and pore models that
we utilize. Section III presents the details of the MD simu-
lations, while in Sec. IV we describe a new method, based on
a coupling between the DMD simulation and the Langevin

equation, that aims to take into account the effect of the
solvent on the protein diffusion. The results are described
and discussed in Sec. V.

II. THE MODELS

We first describe the protein model that we use in the
study and the model of the nanopore that we utilize in the
simulation.

A. The protein model

A model of de novo-designed � family of proteins33 that
consists of four types of amino acids in their 16-residue se-
quence is utilized in the simulation. The model is simplified
further34 to a sequence of hydrophobic �HP� �H� and polar
�P� residues, �PPHPPHHPPHPPHHPP�. Periodicity in the
H-P sequence of the 16-residue peptide �1B is used in order
to make three other sequences with lengths �=9, 23, and 30
residues as PP�HPPHHPP�n, with n=1, 2, 3, and 4, corre-
sponding to �=9, 16, 23, and 30. The simulations reported in
Part I indicated that they all fold into an �-helix with �−4
hydrogen bonds �HBs�. Because the four proteins have simi-
lar native structures, any differences in their diffusion dy-
namics should be solely due to the differences in their
lengths.

The proteins are represented by the protein intermediate-
resolution model35,36 �PRIME�, with several changes that are
described below �see also Part I�. It is an off-lattice, unbi-
ased, intermediate-resolution model in which every amino
acid is represented by four united atom �UA� groups or
beads. A nitrogen UA represents the amide N and hydrogen
of an amino acid, a C� UA represents the �-C and its H, and
a C UA represents the carbonyl C and O. The fourth bead R
represents the side chain, all of which are assumed to have
the same diameter as CH3 �alanine�. The interpeptide bond is
assumed to be in the trans configurations, all the backbone
bond lengths and bond angles are fixed at their ideal values,
and the distance between consecutive C� UAs is fixed ac-
cording to experimental data. Table I presents all the relevant
parameters of the model. PRIME is capable of interacting
both intra- and intermolecularly via HB and HP interaction
potentials.

The protein model that we use is, in our opinion, much
more realistic than what many of the previous investigators
utilized. For example, they used a simplified model for the
amino acids that was based on one or two UA beads. More-
over, the side chains of the amino acid residues were not
explicitly considered. The model that we utilize represents
the amino acids using four UA beads, the side chains are
considered explicitly, and the molecular model also includes
HB interactions, hence honoring the proteins’ structure real-
istically.

We note that other proteins may have a more complex
structure than what we model in the present paper. In par-
ticular, they may have �-strands, sheets, loops, and tight
turns. Whether the results of the present study are applicable
to more complex proteins remain to be seen, although we
expect many of them to be quite general because, as we
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mentioned above, the 3D structure of native proteins is con-
trolled mainly by their amino-acid sequence, which the
model represents carefully and accurately.

B. The nanopore model

We use a slit nanopore, modeled as the space between
two two-dimensional �2D� structureless walls in the xy plane
between z= �h /2, where h is the pore’s height �size�. Peri-
odic boundary conditions are used in the x and y directions
�the xy planes are parallel to the walls�. The pore size h is
varied in order to study its effect on the results described
below.

III. DISCONTINUOUS MOLECULAR DYNAMICS
SIMULATOIN

The PRIME is designed for use with the DMD
simulation,37 a very fast alternative to the classical continu-
ous MD method. The simplicity of the time integration in the
DMD simulation makes it possible to simulate transport of
proteins in nanopores on long time scales—on the order of
many microseconds—at least two orders of magnitude
longer than the previous simulations in this area �see also
Part I�.

All the forces are represented by either hard-sphere or
square-well potentials. Four types of forces act on the beads:
the excluded volume effect �hard-core repulsion� and attrac-
tion between bonded and pseudobonded beads, between
pairs of the backbone beads during the HB formation, and
between HP side chains. Nearest-neighbor beads along the
chain backbone are covalently bonded, as are the C� and R
beads or UAs. Pseudobonds are inserted between next-
nearest-neighbor beads along the backbone in order to keep
its angles fixed, between neighboring pairs of C� beads to
maintain their distances close to the experimental data, and
between side chains and the backbone N and C UAs to hold
the side-chain beads fixed relative to the backbone. All of
these keep the interpeptide group in the trans configuration,
and all the model residues as L isomers, as required.

The potential between a pair ij of bonded beads, sepa-
rated by a distance rij, is given by

Uij = �� , rij � l�1 − �� ,

� , rij � l�1 + �� ,

0, l�1 − �� � rij � l�1 + �� ,
� �1�

where l is the ideal bond length and �=0.023 75 is the tol-
erance in the bond’s length.35,36 There are also the HP inter-
actions between the side chains with the H residues in the
sequence, when there are at least three intervening residues
between them. Then, the interaction is given by

UHP = � � , rij � 	HP,

− 
HP, 	HP � rij � 1.5	HP,

0, rij � 1.5	HP,
� �2�

where 	HP is the HP side chains’ diameter.
The HB interaction may occur between the N and C

beads with at least three intervening residues. However, each
bead may not contribute to more than one HB at any time,
with the range of the interaction being about 4.2 Å and
strength of 
HB. The shape of the HB potential is similar to
that of the HP described above. The HBs are stable when the
angles in N–H–O and C–O–H are almost 180°. The angles
are controlled by a repulsive interaction between each of the
N and C beads with the neighboring beads of the other one.37

Thus, if a HB is formed between the beads Ni and C j, a
repulsive interaction between neighbor beads of Ni, namely,
Ci−1 and C�i, with C j is assumed. The same is used for the
neighbor beads of C j, namely, N j+1 and C�j, with the Ni

bead.
If one of the N or C bead is at one end of the protein, it

has only one neighbor bead in the backbone instead of two,
and, hence, controlling the HB angles will be limited, caus-
ing the HBs with one of their terminal constituents to be less
restricted and, thus, more stable than the other HBs. This
may cause formation of the next non-�-helical HBs in a part
of the protein between the N and C beads and of semistable
structures that influence the simulation results. Thus, we
modify the PRIME and proceed as follows.

Assume that the N-terminal bead, N1, has a HB with C j.
For i=1, the bead Ci−1 does not exist to have a repulsive
interaction with C j and help control the HB angles. There-
fore, we use C�1. Not only can we consider the repulsion

TABLE I. Values of the potential parameters for the proteins used in the
DMD simulations.

Beads
Diameter

�Å�

N 3.300
C� 3.700
C 4.000
R 4.408

Bonds
Length

�Å�

Ni–C�,i 1.460
C�,i–Ci 1.510
Ci–Ni+1 1.330
C�,i–Ri 1.531

Pseudobonds
Length

�Å�

Ni–Ci 2.45
C�,i–Ni+1 2.41
Ci–C�,i+1 2.45
C�,i–C�,i+1 3.80
Ni–Ri 2.44
Ci–Ri 2.49

Bonds
Bond angles

�deg�

�Ni–C�,i–Ci 111.0
�C�,i–Ci–Ni+1 116.0
�Ci–Ni+1–C�,i+1 122.0
�Ri–C�,i–Ni 109.6
�Ri–C�,i–Ci 110.1

085105-3 Protein dynamics in nanopores: Diffusion J. Chem. Phys. 130, 085105 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



between this bead and C j but also define an upper limit for
their distance, so as to control the freedom of motion of N1

and C j that constitute the beads in the HB. The potential Ukl

of such interactions is given by

Ukl =�
� , rkl �

1
2 �	k + 	l� ,


HB, 1
2 �	k + 	l� � rkl � d1,

0, d1 � rkl � d2,

� , rkl � d2.
� �3�

Two H atoms have chemical bonds with the nitrogen in the
protein’s N terminal and are free to rotate around the
N1–C�1 bond while satisfying the constraints on the angles
between the chemical bonds of N1. Thus, if a HB is formed,
one of the two H atoms lies in a plane formed by N, O, and
C, such that the angles in N–H–O and C–O–H are as close to
180° as possible. Therefore, we force the maximum distance
between C�1 and C j to be the same as d2, the maximum
distance between C�i and C j in the usual HBs. This allows us
to control the angles in a HB that contains N1. We use a
similar approach when the C terminal, C�, has a HB with Ni.
The temperature dependence of d2, obtained from separate
simulations, is given by �T is dimensionless, in units of

HB /kBT�

d2 	 5.53 − 0.019/T for N1 – C�j , �4�

d2 	 5.69 − 0.044/T for C� – C�i. �5�

Two unbonded beads that have no HB and HP interactions
also interact through a hard-core repulsion:

UHC = 
� , rij �
1
2 �	i + 	 j� ,

0, rij �
1
2 �	i + 	 j� .

� �6�

The interactions between a pair of beads, separated along the
chain by three or fewer bonds, are more accurately repre-
sented by the interaction between the atoms themselves, not
the UAs. Consequently, we modify the PRIME to account
for the interactions between pairs of beads separated by three
or fewer bonds: the beads are allowed to overlap by up to
25% of their bead diameters, while for those separated by
four bead diameters the allowed overlap is 15% of their bead
diameters.

The interaction potential UPW between the walls and the
protein’s beads is assumed to be

UPW

=�
� , zX � − �h/2 − d3X� ,

− �PW, − �h/2 − d3X� � zX � − �h/2 − d3X − d4X� ,

0, − �h/2 − d3X − d4X� � zX � h/2 − d3X − d4X,

− �PW, h/2 − d3X − d4X � zX � h/2 − d3X,

� , zX � h/2 − d3X,
�

�7�

where zX is the z coordinate of the center of a bead X and the
walls. �PW—the same for all the beads—is assumed to be
1
8�HB, so selected to represent realistically the competition
between protein folding and its beads’ interaction with the
walls. To estimate d3X and d4X, we assumed the pore’s walls

to be made of carbon. Then, the interaction and size param-
eters between the C atoms in the walls and the various beads
were calculated using the Lorentz–Berthelot mixing rules,
namely, 	CX= 1

2 �	C+	X�, and 
CX=�
C
X, where X=N, C�,
C, and R. Then, using separate simulations, the interaction
potential UCX between different beads was estimated. The
distances at which UCX and its second derivative were zero
were taken as d3X and d3X+d4X. The results are d3X=2.85,
3.02, 3.14, and 3.31 and d4X=0.96, 1.01, 0.98, and 1.12 for
X=N, C�, C, and R, respectively. More details are given in
Part I.

IV. COMPUTING THE DIFFUSIVITY: COUPLING THE
LANGEVIN EQUATION TO THE DMD

In the previous applications of the PRIME,35,36 the effect
of the solvent was only implicitly simulated. In fact, the
effect of the solvent was modeled simply as the HP attraction
between the HP side chains. However, this is appropriate and
more important to the folding dynamics but not so much to
the protein motion in a solution. Since we wish to study
diffusion of proteins in a solution �in the bulk as well as in
small pores�, it is essential to simulate correctly the dynam-
ics of protein motion in a solution by including the effect of
the solvent. To include this effect, we have developed a
novel method which we now describe.

In the PRIME, the protein motion in a solution is only
due to the collisions caused by the Andersen thermostat,
which is well suited for the DMD simulations. It is not clear,
however, that this would be sufficient for generating the cor-
rect dynamics of protein diffusion in a solution. If we assume
that the Andersen thermostat collisions are equal to those of
the solvent with the protein’s atoms, then, if the atoms are all
exposed to the solvent, so that the protein does not have
“buried” parts, i.e., parts that are not exposed directly to the
solvent �as is nearly true in the case of a protein with an
�-helix configuration�, we may hope that the thermostat col-
lisions produce the correct dynamics. However, the time in-
terval between the thermostat collisions is, by itself, an im-
portant physical factor. In order to produce the correct
physical behavior of the motion, this time interval must be
selected carefully, so that the average time intervals between
the collisions of the solvent molecules with the protein’s at-
oms are correctly produced. However, once fixed, the ther-
mostat’s rate of collisions will be independent of the spatial
configuration of a protein and its radius of gyration, Rg. This
is not physical and, in general, yields unreliable diffusion
coefficients for proteins from simulations that are carried out
over a wide range of temperatures below and above the fold-
ing temperature Tf, where a protein changes widely its spa-
tial configuration and the radius of gyration, Rg �see below�.
Thus, in this paper we develop a new method by coupling
the Langevin equation to the DMD simulation of a large
molecule, such as a protein, with a small computational cost
which should yield completely physical results. While a
combination of the Langevin equation and atomistic-scale
interactions has been used in the past38 in the translocation
problem, this is the first time, to our knowledge, that the
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Langevin equation is coupled to the DMD simulations for
simulating diffusion of biomolecules in a nanopore.

In the new approach that we propose the thermostat col-
lisions, which are used to keep the temperature of the protein
equal to that of the solvent, do not move the center of mass
�c.m.� of the protein. Instead, using the Langevin dynamics,
independent collisions with the c.m. of the protein are made.
With the PRIME alone �no explicit solvent�, this was not
necessary because, in the presence of the Andersen thermo-
stat all the atoms and the c.m. are automatically at a given
temperature T. Use of the Langevin equation not only makes
the temperature of the protein’s c.m. equal to that of the
solvent but also, more importantly, allows the effect of the
solvent’s viscosity 
 and its molecular collisions with the
proteins to be explicitly included in the simulation.

To simulate diffusion of proteins using a combination of
the DMD and the Langevin equation, one must, in principle,
apply the equation to all the atoms in the proteins. This,
however, would require very long simulations, even when
one uses the DMD. To circumvent this problem, we break
down each protein into several smaller parts or beads and
apply the Langevin equation to each part separately. We rep-
resent each part as a bead with its radius of gyration to be
used as an approximation of its hydrodynamic radius in the
Langevin equation. Thus, groups of four, or five, or six
amino acids are represented as one coarsened bead in pro-
teins of various lengths, implying that such beads consist of
16, 20, or 24 UAs. Recall that each amino acid in the PRIME
is modeled by four UAs. Therefore, a protein of length 9 is
assumed to consist of two beads of four and five amino ac-
ids; a protein of length 16 has three beads, two with five
amino acids and one with six, and a protein of length 23 has
four beads, one with five and three with six amino acids. The
longest protein, with a length of 30, is assumed to have five
beads, each with six amino acids.

Such a coarsened structure still leaves enough structural
details of the proteins to affect their interactions with the
solvent and, at the same time, a dynamic necklacelike model
to trace the effect of the solvent on their motion. We refer to
the model as dynamic necklacelike because �i� the size of the
coarsened beads is not constant but is determined and up-
dated during the simulations by calculating the radius of gy-
ration of each bead periodically and �ii� because the model is
not a necklace or a bead-spring model. The interactions be-
tween the atoms determine their positions which, in turn,
determine the position as well as the internal arrangement of
the coarsened beads. We emphasize that the coarsened beads
are used only when we switch from the DMD simulations to
the Langevin equation. During the DMD simulations the full
atomistic model of the proteins, described in Sec. II, is used.

The coupling between the DMD simulation and the
Langevin equation proceeds as follows. We first carry out
DMD simulation for a time period �t. Suppose that the
speeds of a bead of protein at the beginning and end of the
period �t are, respectively, vb and ve. Since the solvent’s
viscosity affects the proteins’ velocity in the pore but the
time scale over which this effect is important is much differ-
ent from �t, we apply at the end of the time period �t the
Langevin equation to the bead’s c.m. to correct its velocity

due to the presence of the solvent’s molecules. To do so, we
represent the coarsened bead as a particle with a mass m and
an effective radius equal to its radius of gyration, Rg. Then,
the force F on its c.m. is given by

F = m�ve − vb�/�t . �8�

The discretized Langevin equation is given by

�v = vn − vb = F�t/m − �vb�t/m + �F��t� , �9�

where �=6�Rg
, �F is a Gaussian random force �with zero
mean and variance 2kBT��t /m2�, and vn is the speed after
applying the Langevin equation �acting as the vb for the next
application of the Langevin equation�. Thus,

dv = vn − ve = − ��tvb/m + �F��t� , �10�

which yields vn, the velocity of the bead’s c.m., corrected for
the solvent effect. The DMD simulation is then continued for
another time period �t using vn as the new vb, the Langevin
equation is applied again to correct the bead’s c.m. velocity
at the end of the period, and so on. In the simulations, �t was
taken to be 0.02m /�, which is a small enough time step for
integrating the Langevin equation over a time scale m /�.

If we use in the Langevin equation the bulk values of all
the parameters and, in particular, the solvent’s viscosity, we
obtain the bulk diffusivity, even if diffusion of the proteins is
simulated in a pore. The reason is that a bead or sphere near
a wall or between the two walls of a pore experiences higher
fluid viscosity than it does under the bulk conditions. There
have been many studies of the changes in the viscosity of a
fluid confined in a pore or near a solid surface, which con-
tains a bead or particle.39–46 In particular, Faxén39 and
Brenner40 derived expressions for the perpendicular and par-
allel components of the viscosity of a fluid containing a
sphere near a wall, with the underlying assumption being
that the fluid follows the Navier–Stokes equations. Recently,
it was shown42–44 through careful comparison with experi-
mental data that the Brenner–Faxén relations may be used
for computing the viscosity of the same fluid between two
parallel walls. The effect of two walls may be superposed
linearly.43 In the present work, we used this approach to
compute the viscosity of the solvent containing the coars-
ened beads between the pore’s walls.

Before doing so, however, one must address an impor-
tant question: are the Brenner–Faxén relations valid at nan-
ometer scales? Experimentally, this was recently demon-
strated to be the case for a fluid containing a sphere of size of
27 nm near a wall.42 In very tight pores, however—those that
consist of four or fewer layers of a fluid molecules—the
usual definition of the viscosity breaks down, and the valid-
ity of the Navier–Stokes equations which is based on repre-
senting the fluid as a continuum is lost.47–49 However, the
deviations become smaller47–49 as the size of the pore in-
creases from five to six fluid molecules’ diameter to larger
values. For a slit pore that consists of ten layers of fluid
molecules, there is very good agreement between the
Navier–Stokes viscosity and what is computed by full MD
simulations.47–49 In the problem that we study water is the
solvent with a molecular diameter of about 0.3 nm. There-
fore, roughly speaking, for nanopore sizes of about 3 nm or
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larger, the Navier–Stokes viscosity may be assumed to be the
correct viscosity, so that the Brenner–Faxén relations may be
used with some confidence. Thus, only for the nanopore of
size 1.75 nm—the smallest that we simulate—which con-
tains about five layers of water molecules, the approximation
may be considered crude. At the very least, we expect the
results to be correct qualitatively.

The way the Brenner–Faxén relations are used in the
simulations is as follows. Suppose that a coarsened bead,
representing a portion of the protein, is a sphere of hydrody-
namic radius a, which we approximate by its radius of gyra-
tion and is at a distance z from one of the pore’s walls �its
distance from the other wall is h−z, with h being the pore
size�. Suppose also that the perpendicular and parallel com-
ponents of the viscosity of the solvent that contains such a
sphere are, respectively, 
�=��
0 and 

 =�

0, with 
0

being the bulk value of the viscosity. As mentioned above, it
has been shown that a linear superposition is a very good
approximation for determining the effective viscosity of the
fluid containing the beads between two walls,42 according to
which

�II � �w1
I + �w2

I − 1 = �I�z� + �I�h − z� − 1. �11�

Here, �II is the two-wall correction factor, while �w1
I and �w2

I

are the single-wall correction factors. To determine the
single-wall effects, in the region z /a�1.5, we used the first-
order terms of the Brenner–Faxén relations, which have been
shown41,43,45,46 to be less than 1% in error in this area:

�

−1 � 1 −

9

16
�a

z
� + O��a

z
�3� , �12�

��
−1 � 1 −

9

8
�a

z
� + O��a

z
�3� . �13�

For z /a�1.5, we used the full Faxén relation instead of its
first-order approximation:

�

−1 � 1 −

9

16
�a

z
� +

1

8
�a

z
�3

−
45

256
�a

z
�4

−
1

16
�a

z
�5

+ O��a

z
�6� . �14�

For 1.25�z /a�1.5 we used the first-order approximation of
the Brenner relation given above. For z /a�1.25, where ��

�10, we turned off the Langevin dynamics in the perpen-
dicular direction, i.e., in this region no “kicks” by the Lange-
vin equation act on the coarsened beads. One must also im-
pose some maximum value on 
� because the time step,
�t=0.02m /�, is inversely proportional to 
�. While �t de-
termines the frequency of the switching between the DMD
simulations and calculating the corrections to the speed
changes by Langevin equation, very large values of 
� �i.e.,
very frequent switches� are not desirable, as it would add
very significantly to the total computation times.

To calculate the diffusion coefficient of the proteins, we
compute the mean-square displacements �MSDs� R2�t� and
utilize the Einstein relation �R2�t��=2dDt, where D is the

diffusivity, d is the spatial dimension, and �·� denotes an
average over all the initial positions. In general,

�R2�t�� � t�, �15�

where �=1 corresponds to Fickian diffusion, whereas ��1
represents anomalous diffusion. The MSDs are computed at
each temperature T using all the data in the simulation time
after the system reaches equilibrium.

We carried out simulations of the diffusion process in a
pore system in which there was either an attractive or a re-
pulsive potential, U+ and U−, respectively, between the pro-
teins and the pore’s walls. Each case was studied over a
range of temperature. Due to the large fluctuations of the
proteins’ energy and structure near their folding temperature
Tf, longer simulations were carried out near Tf. To reduce the
central processing unit time, we used advanced algorithms in
the computations, including link lists, neighbor lists, and
false positioning which is special to the DMD. Temperature
was held constant using the Andersen method.

V. RESULTS AND DISCUSSIONS

We studied diffusion of proteins of various lengths in
nanopores of different sizes. In addition, we studied the ef-
fect of the nature of the interaction of the proteins with the
pores’ walls—repulsive versus attractive interactions—on
protein diffusion. A protein possesses its biological ability
only at temperatures lower than its folding temperature Tf.
Moreover, experimental works, including those on the trans-
port of proteins, are usually carried out at room temperature.
At high temperatures a protein is similar to a flexible poly-
mer, the diffusion of which in confined media has been stud-
ied extensively. Therefore, except when we study the tem-
perature dependence of the diffusivity, we focus mainly on
protein diffusion at a low temperature, T=0.09. Note that,
with36 
HB=3300kB, the reduced temperature T=0.09 corre-
sponds to 297 K. In what follows we present and discuss the
results.

A. Diffusion in the bulk

Consider, first, protein diffusion under the bulk condi-
tions. Figure 1 presents samples of time dependence of the
MSD �R2�t��. Over almost the entire simulated time interval,
the MSDs follow Eq. �15� with ��1, i.e., diffusion is
Fickian.
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FIG. 1. MSDs �R2�t�� vs time t for the smallest and largest proteins in the
bulk. The solid straight lines represent fit of the results to Eq. �15� with �
�1.
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Figure 2 presents the temperature dependence of the
bulk diffusivity D0 for proteins of lengths �=16 and 23. Far
from the folding temperature Tf the diffusivity varies with T
roughly linearly. This is expected, since at such temperatures
the structure of a protein does not undergo fundamental
changes. Near the folding temperature Tf, however, the struc-
ture does change and, therefore, nonlinear dependence on the
temperature may be expected. We shall come back to this
point shortly.

Figure 3 presents the dependence of the diffusivity D0 on
the protein’s length � at T=0.09. The results are represented
very accurately by a power law,

D0 � �−�, �16�

with �	0.84. In contrast, the radius of gyration, Rg, of the
same proteins under the bulk conditions varies perfectly lin-
early with the length �. The reason is that, at low tempera-
tures below their folding temperatures, the proteins take on
the folded �-helix structure, which is like a cylindrical tube
or a rod. Therefore, Rg should vary linearly with the protein’s
length �, and Fig. 3 confirms this. At high enough tempera-
tures, however, a protein is similar to a flexible polymer, and
Rg no longer varies linearly with � but as a power law with a
Flory exponent of about 0.6.

How does the computed diffusivity compare with the
experimental data? Konopa et al.22 reported on the diffusiv-
ity of green flourescent protein �GFP�, which is a 27 kDa

�-barrel protein with 238 amino acids.50 The GFP is about
13 times heavier than the largest �-helix protein that we
study, which is a 2.1 kDa protein with 30 amino acids. As-
suming that the two proteins have nearly compact
structures—a reasonable assumption—the sizes of the two
proteins have a ratio 131/3	2.3. So, roughly speaking
�roughly, since the shapes of the two proteins are different,
and this affects their hydrodynamic radii�, the protein that we
study should have a diffusivity D about 2.3 times larger than
that of the GFP in the bulk. The diffusivity of the GFP was
reported22 to be D	8.7�10−7 cm2 /s, whereas for the pro-
tein that we study, D	1.2�10−6 cm2 /s, a factor of about
1.4 larger. Thus, the computed diffusivities are of the correct
order of magnitude. See also Smith et al.51 for more data.

B. Diffusion in a nanopore

In addition to the pore size and the nature of the inter-
action between a protein and the pore’s walls, an important
factor in determining the diffusivity of a protein is its mo-
lecular size, represented roughly by its radius of gyration, Rg.
The radius of gyration, Rg, of a protein in the bulk is rela-
tively large at high temperatures, since it is in unfolded states
with an essentially random-coil structure. However, as T is
lowered, the protein begins to take on the compact structure
of its native �-helical state and, thus, its Rg decreases. At low
enough temperatures Rg attains its minimum value. The
�-helix shape does not depend on the pore size h if h is
relatively large and, as a result, the Rg of the folded protein at
low temperatures in such pores is nearly the same as that in
the bulk.

A better way of understanding the structure of a protein
in a nanopore is perhaps through a study of its configuration
in the xy planes parallel to the nanopores’ walls. To do so, we
computed Rg

xy, the 2D analog of Rg in the xy planes. Figure 4
presents Rg

xy of a protein of length �=23 at T=0.09 versus h.
In the case of a pore with repulsive walls, Rg

xy is always
larger than its corresponding value in the bulk because repul-
sion elongates the protein. In the case of a pore with attrac-
tive walls, however, there is an unexpected minimum in Rg

xy.
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FIG. 2. Temperature dependence of the bulk diffusivity D0 for two proteins.
Arrows indicate the locations of the folding temperature Tf.
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The minimum is related to a phenomenon that we call the
proteins’ “standing up,” whereby both ends of a long enough
folded protein interact with both walls, such that the protein
is nearly perpendicular to the walls. This phenomenon,
shown in Fig. 5, reduces Rg

xy. As the size of the pore in-
creases, the phenomenon disappears and, therefore, Rg

xy in-
creases again. The effect of this phenomenon on protein dif-
fusion in small pores will be discussed shortly.

As discussed above, when a protein is �in a solution� at a
temperature far below its folding temperature Tf, it is com-
pletely folded and its Rg is nearly equal to that in the bulk.
Therefore, any change in the diffusivity of a protein in a
nanopore at low enough T is strictly due to the interaction of
the structure of a folded �-helix with the nanopore’s walls.
Our interest in the problem is also over such a temperature
range. Note also that the folding temperature Tf for the bulk
state and those for the pores are not the same. In fact, as
shown in Part I, in a nanopore Tf also depends on whether
the walls are attractive or repulsive. Therefore, due to the
strong fluctuations of Rg and D in the region around Tf, the
diffusivities in the pore and under the bulk conditions cannot
be directly compared. The comparison is meaningful mainly
at temperatures far from Tf.

Another aspect of diffusion of a protein in a nanopore
which is fundamentally different from that in the bulk is that,
in addition to the pore diffusivity being smaller than its bulk
value D0, the diffusion process is anisotropic, with the MSD
�R


2�t�� in the xy planes parallel to the walls being much
larger than �R�

2 �t�� in the direction perpendicular to the
walls. Moreover, �R


2�t�� grows with the time indefinitely and
linearly, i.e., the diffusion process is Fickian. This is demon-
strated clearly in Fig. 6. As one might expect, �R


2�t�� in the
pore with repulsive walls is larger than that in a pore with
attractive walls. As the size of the pore decreases, the differ-
ence between the two MSDs also increases.

However, the MSD �R�
2 �t�� saturates after a finite time.

We show in Fig. 7 the results at T=0.09 for a protein of
length �=23 in two pores of size h=1.75 nm, one with at-
tractive and one with repulsive interactions between the pro-
tein and the walls. Hence, the diffusivity in the direction
perpendicular to the pores’ walls is zero. It is clear that, in
the pore with attractive walls, it takes a longer time for
�R�

2 �t�� to saturate because there is more space for the pro-
teins to diffuse in, but the fluctuations are also larger for the
same reason. Thus, hereafter, by diffusivity we mean one
associated with the proteins’ motion in the planes parallel to
the pores’ walls.

Figure 8 presents the temperature dependence of the dif-
fusivity of a protein of length �=23 in a pore of size h
=4 nm with the two types of walls. These results should be
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FIG. 5. �Color online� Configurations of a protein of size �=23 in various
pores at T=0.09.
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compared with those shown in Fig. 2 under the bulk condi-
tions. The diffusivities in the pore with repulsive walls are
larger than those with attractive walls, but the trends appear
to be similar.

As discussed above, due to the strong thermal fluctua-
tions near Tf, Rg varies strongly with T. Consequently, near
Tf the effective diffusivity D no longer varies linearly with T.
To see this better, we present in Fig. 9 the average radius of
gyration �Rg� of the protein in the same nanopores of size
h=4 nm. Far from the folding temperature Tf, Rg is con-
stant. However, near Tf there are strong thermal fluctuations,
as a result of which Rg changes rapidly.

Figure 10 presents the dependence of the diffusivity on
the proteins’ length � in pores of size h=4 nm with attrac-
tive and repulsive walls at T=0.09. Similar to the bulk con-
ditions, D depends on � as a power law, as given by Eq. �16�.
The diffusivity in the pore with repulsive walls is larger than
in the pore with attractive walls. This may be explained by
observing that, in pores with repulsive walls the proteins are
pushed toward the pore’s center and, therefore, their diffu-
sion is more efficient than that in the pore with attractive
walls. We expect the same to be true if we impose an exter-
nal potential gradient across the pore. For both pores, the
exponent � defined by Eq. �16� is close to 0.84 that we find
for the bulk condition.

Figure 11 presents the dependence of the diffusivities on

the proteins’ size � in two smaller pores with sizes h=3 and
1.75 nm, both with repulsive walls. The qualitative features
of the results are the same as those presented in Fig. 10 for
pore size �=4 nm. Thus, at least for the range of pore sizes
that we have studied, the scaling of the diffusivity in the
pores with the proteins’ size remains close to that in the bulk.

Figure 12 presents the ratio D /D0 for a protein of size
�=23 versus the pore size h at T=0.09. The results were
computed using long simulations �3 �s�. The diffusivities in
the pores with repulsive walls are larger than those in pores
with attractive walls because repulsion keeps the protein
more or less near the pores’ center, whereas with attractive
walls the protein may spend considerable time near the walls
and even attach itself to them. This is shown in Fig. 5. For
the same reason, the increase in the value of D+ with increas-
ing pore size h is rather slow in pores with attractive walls.

However, a most interesting result is the dependence on
the pore size h of D+ /D−, the ratio of the diffusivities in
pores with attractive and repulsive walls. Figure 13 presents
the results. There seems to be no particular trend for this
dependence. However, such “erratic” behavior may be ex-
plained by considering the configurations of the proteins in
pores of various sizes.

Thus, consider Fig. 5. In the smallest pore, with size of
1.75 nm, the protein is highly confined, with h, the distance
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between the walls, being just a little larger than the diameter
�d of the �-helix. The protein may be adsorbed on one wall
only but often has contact with both walls through its ends.
In the slightly larger pores, namely, with sizes h=2 and 2.5
nm, the protein interacts most strongly with only one of the
walls, even if it is interacting with both walls, and the angle
that its molecule makes with the walls �see Fig. 5� is rather
small, as a result of which it will detach from one of the
walls and adsorb completely on the other one. In the next
two larger pores �3 and 3.5 nm�, the protein may again attach
to one or both walls, but the latter occurs more frequently.
This is due to the fact that the angle between the protein and
the walls is relatively large, making it difficult for the protein
to separate completely from one wall to attach itself com-
pletely to the other wall.

In the nanopore of size of 4 nm, the distance h between
the walls is nearly equal to Ree, the end-to-end distance in the
�-helix configuration. Here, if the protein is not adsorbed on
one wall, it may have strong interaction with one wall or
both. Finally in pores with a size h�Ree �h=5 nm and
larger� the protein cannot have strong interactions with both
walls at the same time. Another possibility is for the protein
to be “free” of both walls �pore of size 7�, but this is ener-
getically unfavorable at low T and happens very rarely.

The two local maxima in Fig. 13 occur in pores of sizes
h=1.75 and 3.5 nm. For this protein, �l	3.5 nm. Thus, we
find that the first maximum occurs at a pore size nearly equal
to the diameter �d of the �-helix, while the second maximum
occurs in a pore for which h is slightly less than the �end-to-
end� length Ree of the �-helix. Since in the two pores the
protein interacts most often with both walls, its c.m. is close
to the pores’ centers, hence more efficient diffusion. In effect,
due to the opposite directions of the interaction forces be-
tween the two walls and the protein, the forces cancel each
other, hence allowing the protein to diffuse efficiently. There-
fore, we may argue that for �-helices with different sizes �,
the pore size at which the first maximum occurs should not
vary much with �, because the average diameter of the simu-
lated �-helices is nearly the same. However, the h at which
the second maximum occurs depends on �.

A more quantitative discussion of the two local maxima
in the dependence of D+ /D− on the pore size h is as follows.
Suppose that t2 is the time period over which a protein inter-
acts with both walls, and t is the total time that the protein
spends in a pore. By interacting with one wall we mean that
at least one of the protein’s atoms is in the attractive range of
that wall’s potential—the space between the distances d3X

and d3X+d4X from the wall; see Sec. III. Thus, the protein
interacts with both walls when, according to this definition,
some of its atoms are interacting with one wall and some
others with the other wall. Figure 14 presents the dependence
of t2 / t on the pore size h. Consistent with the argument given
above and Fig. 13, the two local maxima are at h
=1.75 nm and h=3 nm, and for h=3.5 nm the value of t2 / t
is large. Note that for pores of size h�5 nm the time t2 is
insignificant simply because the pore size is large compared
with the protein size. Note also that the minimum of Rg

xy in
the pores with attractive pores, shown in Fig. 4, also occurs
at h=3.5 nm. Therefore, the pore size dependences of all the
quantities are consistent with one another.

Another quantitative way of studying the effect of con-
finement on protein diffusion is by computing the distribu-
tion of the distances Za of all the protein’s atoms from the
two walls, as well as that of Zc.m., the distance of the pro-
tein’s c.m. from the walls, over the entire �simulation� time.
Figure 15 presents the results for a protein of size �=23 at
T=0.09 in pores of various sizes and repulsive walls. As the
results indicate, the protein’s atoms and its c.m. are distrib-
uted mostly in the middle of the pore. This result, which is
due to the lack of an energy scale for the interaction of a
protein with the pore’s walls, also implies that the depen-
dence of the two distributions on the temperature in a pore
with repulsive walls cannot be significant. We shall come
back to this point shortly. In the largest pore that we simu-
lated, one with size h=10 nm, the two distributions appear
to become mostly flat.

In pores with attractive walls, however, the results are
quite different. Figure 16 presents the two distributions in the
same pores but with attractive walls. Since the temperature is
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low, the protein takes on a definite structure in which not all
the atoms can interact directly with the walls, as they are at
finite distances from them. The broadness of the distribution
of Zc.m. correlates well with t2 / t, shown in Fig. 14. For larger
t2 / t the distribution of Zc.m. is narrower and exhibits a pro-
nounced peak in the middle of the pore, which is due to the
fact that in such pores the protein’s ends are attached to the
walls most of the times; see Fig. 5. As the pore size increases
though, the time scale t2 becomes insignificant �see Fig. 14�,
and the peaks move toward the walls. The distributions be-
come symmetrical, with one peak near each wall, only after
very long times because, as described above, once a protein
is very near a wall, it spends a long time there before diffus-
ing toward the center and the opposite wall.

As mentioned above, Fig. 15 implies that temperature
does not have a strong effect on the distributions of Zc.m. and
Za if a pore’s walls are repulsive. The same is not true when
the walls are attractive. Shown in Fig. 17 is a comparison of
the two distributions at two temperatures in pores of the
same size, one with attractive and one with repulsive walls.
It is clear that, whereas the two distributions are strongly
affected as T increases when the walls are attractive, the
same is not true when the walls are repulsive.

C. A phase diagram

We may summarize the effect on protein diffusion of the
temperature T, pore size h, and interactions U� with the

pore’s walls in a “phase diagram.” The phase diagram is
shown in Fig. 18. We divide the phase space �T ,h� into four
regions for both U+ and U− and refer to the diffusivities in
region number p as Dp

+ and Dp
−. Generally speaking, the

above discussions indicate that we should always expect
Dp

+�Dp
−�D0 in all the regions, which our simulations de-

scribed above also confirmed. Moreover, we expect the dif-
ference Dp

−−Dp
+ to be larger in larger pores because in pores

with attractive walls a protein is attached to the walls,
whereas in the case of a pore with repulsive walls, it diffuses
more or less freely in the area near the pore’s center, and
hence has larger diffusivity. In the discussions that follow,
when we refer to the attractive interaction potential U+, we
mean one that satisfies one condition: the interaction strength
�PW is not so large �considering the energetic and entropic
effects� that can prevent folding of a protein into its native
�-helix structure.

Region 1 is bounded by the folding temperature Tf of a
protein in a pore with repulsive walls. Because T is relatively
high in region 1, in a pore with U− the protein is unfolded
and resembles a flexible chain. Thus, the theories for diffu-
sion of flexible chains in pores are applicable. In the case of
a pore with U+, however, the protein’s atoms have significant
interactions with the walls �if the pore is not too large�.
While a protein is not folded in this region, most of its atoms
interact with the pore’s walls. If the temperature is higher
than a typical T at which the kinetic fluctuations are large
enough to overcome all the possible interactions of protein
atoms, then the average potential energy of the protein van-
ishes, and we expect U+ to have a negligible effect on the
protein structure and diffusion. Therefore, in region 1 and at
relatively high T we must have D1

+	D1
−�D0. Moreover, in

this region all the scaling relations derived previously for
various properties of a flexible polymer chain in a confined
medium should be valid for a protein because the fluctua-
tions in the energy overcome all the internal and external
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interactions of the protein’s atoms. Note that the curves that
indicate the folding temperatures Tf cannot be continued
down to the limit h→0 because in very tight pores the pro-
teins cannot fold and Tf cannot be defined.

Most of region 2 is bounded by a pore size h	�d, where
�d is the diameter of the �-helix. In this region, relative to the
thermal fluctuations, the energetic interactions are more im-
portant. Moreover, a protein cannot attain its folded state due
to the steric restrictions �h��d in region 2�. In the case of a
pore with U− the protein diffuses in the free space of the pore
near its center and, if sterically allowed, may form some HBs
in its structure. In the case of a pore with attractive walls,
however, the protein’s atoms interact with the walls. How-
ever, due to the small pore sizes in this region, we do not
expect D2

− to be significantly larger than D2
+.

Region 3 is bounded from below by the pore size, h
	�d, by the folding temperature line of proteins in a pore
with attractive walls on the right and bounded from above by
a pore size h=h�����l, where �l is the length of the folded
�-helix which varies linearly with � at low T �see above�. �l

is about the same as Ree, the end-to-end distance of a protein
in the �-helix configuration. For low h a protein is folded
and highly confined in the pore. As the pore size increases,
the protein interacts strongly with only one of the walls if the
walls are attractive. In the case of a pore with repulsive in-
teractions, the protein has freedom of diffusion between
walls because the pore size is increasing. Near the upper
boundary of this region, the protein is in the standing up
configuration, described earlier.

However, two anomalous increases in the values of D+

arise in region 3, where the pore size h is close to the border
lines, comparable to either �d or �l. As discussed earlier, in
the border areas in region 3, the proteins spend a significant
time t2 interacting strongly �in the sense defined earlier� with
both walls simultaneously, which leads to the two anomalous
peaks in the ratio D+ /D−; see Fig. 18.

Region 4 includes large pore sizes, h��l. For example,
the simulations indicate that for an �-helix of size �=23,
region 4 includes pores with Rg /h	0.1. In the case of a pore
with attractive walls, a protein interacts with only one wall

�especially at lower T� but does not interact with both walls
simultaneously due to the large size of the pore. It may, in
fact, be adsorbed onto a wall, not diffusing freely in the
space between the walls for a long time. Thus, a protein
spends most of its time interacting strongly with the pore
walls. The distribution of Zc.m. for an �-helix of length �
=23 in a pore size of h=10 nm, shown in Fig. 10, confirms
this. Hence, in region 4 we do not expect D4

+ to increase
significantly with increasing h, whereas D4

− does increase
with increasing h; see Fig. 12.

Thus, in regions 3 and 4 Dp
− increases smoothly and sim-

ply with increasing pore size h and approaches the bulk
value D0 when h is large. Dp

+, however, has a more complex
behavior for an �-helix with two molecular length scales,
i.e., the diameter �d and length �l of the cylinderlike shape of
the �-helix. In fact, in these regions D+ increases more
slowly than D− because, as discussed above, in these two
regions a protein in a pore with attractive walls spends most
of its time near the walls or is attached to them even in the
larger pores.

VI. SUMMARY

DMD simulations were coupled to the Langevin equa-
tion, and together with the PRIME, an intermediate-
resolution model of proteins, were used to study diffusion of
proteins in nanopores. We considered pores with attractive or
repulsive interaction potentials between their walls and the
proteins. The diffusivity D of the proteins was computed as a
function of the number of the amino-acid groups, tempera-
ture T, the pore size h, and the interaction potentials with the
walls. We found that the diffusivity follows a power law in
the length � of the proteins and is larger in pores with repul-
sive walls. D+ /D−, the ratio of the diffusivities in pores with
attractive and repulsive walls, exhibits two local maxima in
its dependence on the pore size h. We attributed them to the
pore sizes and protein configurations that induce significant,
long-lasting interactions with both walls of a pore. Indeed,
we found the same type of h dependence for t2 / t, the ratio of
the time t2, the time that the proteins spends interacting sig-
nificantly with both pore’s walls, and the total time t. Far
from the folding temperature Tf, D increases linearly with T,
but due to the thermal fluctuations and their effect on the
proteins’ structure near Tf, the dependence of D on T in this
region is nonlinear. We propose a phase diagram, consisting
of four regions, which describes qualitatively the effect of h,
T, and interaction potentials with the walls on the diffusivity
D.

The next step in this problem is to study transport of
proteins in nanopores in the presence of an external potential
gradient, such as a pressure gradient. Work in this direction
is in progress.
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