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Statistical theory for the Kardar-Parisi-Zhang equation in „1¿1… dimensions
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The Kardar-Parisi-Zhang~KPZ! equation in (111) dimensions dynamically develops sharply connected
valley structures within which the height derivativeis not continuous. We develop a statistical theory for the
KPZ equation in (111) dimensions driven with a random forcing that is white in time and Gaussian-correlated
in space. A master equation is derived for the joint probability density function of height difference and height

gradientP(h2h̄,]xh,t) when the forcing correlation length is much smaller than the system size and much
larger than the typical sharp valley width. In the time scales before the creation of the sharp valleys, we find

the exact generating function ofh2h̄ and]xh. The time scale of the sharp valley formation is expressed in
terms of the force characteristics. In the stationary state, when the sharp valleys are fully developed, finite-size

corrections to the scaling laws of the structure functions^(h2h̄)n(]xh)m& are also obtained.
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I. INTRODUCTION

There has been a great deal of recent work on the for
tion, growth, and geometry of interfaces@1–5#. The dynam-
ics of interfaces has turned out to be one of the most fa
nating and challenging topics in theoretical nonequilibriu
physics. There are two principal approaches for theoretic
analyzing such problems. The first is based on comp
simulations of discrete models and often provides use
links between theoretical analysis and experiments. The
ond approach’s aim is to describe the dynamical process
stochastic differential equation. This procedure neglects
short length-scale details but provides a coarse-grained
scription of the interface~that is suitable for characterizin
the asymptotic scaling behavior!. Theoretical modeling of
growth processes started with the work of Edwards a
Wilkinson @6#. They suggested that one might describe
dynamics of the height fluctuations by a simple linear s
chastic equation. Kardar, Parisi, and Zhang~KPZ! @7# real-
ized that there is a relevant term proportional to the squar
the height gradient which represents a correction for lat
growth. Indeed, the KPZ equation is a prototype model fo
system in which the interface growth is subjected to a r
dom external flux of particles. The randomness is descri
by an annealed random noise, which mimics the random
sorption of molecules onto a surface. In the KPZ model@e.g.,
in the (111) dimension#, the surface height fieldh(x,t) of a
one-dimensional substrate satisfies a stochastic random e
tion,

]h

]t
2

a

2
~]xh!25n]x

2h1 f ~x,t !, ~1!

wherea>0 andf is a zero-mean, statistically homogeneo
white in time, and Gaussian process with covariance
1063-651X/2002/65~2!/026132~22!/$20.00 65 0261
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^ f ~x,t ! f ~x8,t8!&52D0d~ t2t8!D~x2x8!, ~2!

where

D~x2x8!5
1

Aps
expS 2

~x2x8!2

s2 D , ~3!

ands is the variance ofD(x2x8). Typically, the correlation
of forcing is considered as ad function for mimicking the
short-range correlation. We regularize thed-function correla-
tion by a Gaussian function. When the variances is much
less than the system size, we would expect that the mo
would represent a short-range correlated forcing. So
would stress that our calculations are done for finites!L,
whereL is the system size. The average force on the in
face is unimportant and may be removed from the equa
of motion by a boost transformation. Every term in Eq.~1!
involves a specific physical phenomenon contributing to
surface evolution. The parametersn, a, andD0 ~ands! de-
scribe the surface diffusive relaxation, nonlinear late
growth, and the effective noise strength, respectively.

We consider a substrate of sizeL and define the mean
height of a growing film and its roughnessw by

h̄~L,t !5
1

L E
2L/2

L/2

dx h~x,t !, ~4!

w~L,t !5@^~h2h̄!2&#1/2, ~5!

where^ & denotes an averaging over different realizations
the noise~samples!. Starting from a flat interface~one of the
possible initial conditions!, it was conjectured by Family and
Vicsek@8# that a scaling of space by a factorb and of time by
a factorbz ~z is the dynamical scaling exponent! rescales the
roughnessw by a factorbx as follows:
©2002 The American Physical Society32-1
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w~bL,bzt !5bxw~L,t !, ~6!

which implies that

w~L,t !5Lx f S t

LzD . ~7!

If for large t and fixed L@(t/Lz)→`# w saturates, then
f (x)→const asx→`. However, for fixed largeL and 1!t
!Lz, one expects that correlations of the height fluctuat
are set up only within a distancet1/z and thus must be inde
pendent ofL. This implies that forx!1, f (x);xb with b
5x/z. Thus dynamic scaling postulates that@9#

w~L,t !;tb, 1!t!Lz,
~8!

;Lx, t@Lz.

The roughness exponentx and the dynamic exponentz char-
acterize the self-affine geometry of the surface and its
namics, respectively. Several time regimes can be dis
guished in the time evolution of the surface roughness. T
can be summarized as follows: for very early times, the no
term dominates since its contribution to the equation gro
as the square root of time. In this time regime, the surf
roughness grows asw(t);t1/2. For intermediate times, th
linear term has the main contribution. The linear casea
50) is the Edwards-Wilkinson model, for which one ca
easily find that the surface roughness behaves asw(t)
;tb0, where the value ofb0 depends on the dimension o
the substrate„b05@(22d)/4# for a d-dimensional surface….
For later times, the contribution of the relevant nonline
term becomes a dominant one and the surface rough
growth is characterized by the behaviorw(t);tb. For very
late times and finite substrate lengthL, the roughness satu
rates asw(t→`,L);Lx. Of course, in an experiment or in
numerical simulation the transition between the different
gimes is not sharp and different crossover behaviors can
observed. Galilean invariance implies the relationx1z52
independent of dimension@10,11#. It means that there is only
one independent exponent in the KPZ dynamics. In the o
dimensional substrates a fluctuation-dissipation theo
yields exactlyz5 3

2 , x5 1
2 , andb5 1

3 @12#. In contrast to one
dimension, the cased>2 can only be attacked by approx
mative field-theoretic perturbative expansions@13–16#. It is
well known that the effective coupling constant for the KP
equation isg52a2D0 /n3. Phase diagram information ex
tracted from the renormalization-group flow indicates th
d52 plays the role of a lower critical dimension. Fo
d<2, the Gaussian fixed point (a50) is infrared-unstable
and there is a crossover to the stable strong-coupling fi
point. Ford.2, a third fixed point exists, which represen
the roughening transition. It is unstable and lies between
Gaussian and strong-coupling fixed points, which are n
both stable. Only the critical exponents of the stron
coupling regime~g→` or n→0! are known in (111) di-
mensions and their values in higher dimensions as wel
02613
n

-
n-
y
e
s
e

r
ss

-
be

e-
m

t

d

e
w
-

s

properties of the roughening transition have been kno
only numerically@17–23# and by the various approximativ
schemes@24–32#.

The theoretical richness of the KPZ model is partly due
close relationships with other areas of statistical physics.
shown that there is a mapping between the equilibrium
tistical mechanics of a two-dimensional smectic-A liquid
crystal onto the nonequilibrium dynamics of th
(111)-dimensional stochastic KPZ equation@33#. It has
been shown in@34# that one can map the kinetics of th
annihilation processA1B→0 with driven diffusion onto the
(111)-dimensional KPZ equation. Also the KPZ equation
closely related to the dynamics of a sine-Gordon chain@35#,
the driven-diffusion equation@36,37#, high-Tc supercon-
ductor@38#, directed paths in the random media@39–52# and
charge-density waves@53#, dislocations in disordered solid
@3#, the formation of a large-scale structure in the unive
@54–57#, Burgers turbulence@58–85,90#, etc.

As already mentioned, the main difficulty with the KP
equation is that it is controlled, in all dimensions, by a stro
disorder~or strong-coupling! fixed point and efficient tools
are missing to calculate the exponents and other unive
properties, e.g., scaling functions, amplitudes, etc. Des
the fact that in one dimension the exponents are kno
many properties, including the probability density functio
~PDF! of the height of a growing interface, have so far be
measured only in numerical simulations. Recently, Derr
and Lebowitz have shown that for one particular model
the KPZ class, the asymmetric exclusion process~ASEP!,
the distribution of the displacement of particles could be c
culated for a finite geometry by the Bethe ansatz@86,87#. It is
proved in@86,87# that the distribution of deviationy of the
average current is skewed and has the following asympt
@88#:

P~y!;exp~2Ay5/2!, y→1`,

;exp~2Buyu3/2!, →2`. ~9!

More recently, Pra¨hofer and Spohn mapped the pol
nuclear growth model~PNG! onto random permutations
where the height is the length of the longest increasing s
sequence of such a permutation, and thereby onto Gaus
random matrices. Hence they succeeded to obtain an ana
expression for a certain scaling distribution, which led to
understanding of how the self-similar height fluctuations d
pend on the initial conditions@94#.

In this paper, we are interested in the statistical proper
of the KPZ equation in the strong-coupling limit (v→0).
The limit is singular, i.e., the surface develops sharp valle
Therefore, starting with a flat surface after a finite time sca
tc , the sharp valley singularities are dynamically develop
In the singular points~sharp valleys!, the spatial derivative of
the h(x,t) is not continuous. Hence the limit ofn→0 is not
singular for t,tc , and we can ignore the diffusion term
while after developing the singularities the diffusion term h
a finite contribution in the PDF of height fluctuations. In
spired by the methods proposed recently in the works
Weinan E and Vanden Eijnden@73#, we develop a statistica
2-2
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method to describe the moments of height difference
height gradient of height fieldh(x,t). We derive a maste

equation for the joint PDF of the height difference (h2h̄)

and height gradient]xh, P„(h2h̄),]xh…, for a giveng or
diffusion constantn. We will consider two different time
scales in the limit ofn→0: ~i! early stages before developin
the sharp valley singularities, and~ii ! an established station
ary state comprised of fully developed sharp valley singul
ties. In the regime~i!, ignoring the relaxation term in the
equation of the joint PDF whenn→0, we determine the
exact generating function of joint moments of height a
height gradient fields. The realizability condition for the r
sulting joint PDF sheds light on the time scale of the sh
valley formation. In contrast, the limitn→0 is singular in
the regime~ii !, leading to an unclosed term~relaxation term!
in the PDF equation. However, we show that the unclo
term can be expressed in terms of statistics of some qu
ties defined on the singularities~sharp valleys!. Identifying
each sharp valley in positiony0 with three quantities, namely
the gradient ofh in the positiony01 ,y02 and its height from

h̄, we determine the dynamics of these quantities. In b

regimes, all the momentŝ(h2h̄)n(]xh)m& for a givenn and
m are found. In the regime~ii ! we will prove that in leading
order, whenL→`, fluctuation of the height field is not in
termittent and also we succeed in giving the analytic form
the amplitudes of all the structure functions. In addition,
scaling behavior and the amplitudes of all the correct
terms due to the finite-size effect are calculated.

The paper is organized as follows. In Sec. II, we der
the master equation for the joint PDF of height differenc
and height gradients for given diffusionv. We convert the
height PDF, i.e.,P(h2h̄,t), evolution equation consequen
to a Fokker-Planck equation for an arbitrary given diffusi
constant. In Sec. III, we consider the limit ofv→0 of the
master equation in the time scales in which there is no
gularity in the surface~before developing the sharp valleys!.
We determine the exact and explicit expression of the ge
ating function for the momentŝ(h2h̄)n(]xh)m& for givenn
and m. In Sec. IV, we consider the master equation in t
limit n→0 and consequently when the singularities are fu
developed. In this regime, the relaxation term has a fin
contribution in the master equation. Using the methods in
duced in@73#, we prove that the unclosed term can be writt
in terms of quantities which are defined on sharp valle
where]xh is discontinuous. Also in this section, we dete
mine the relation between the density of sharp valleys
the forcing varianceDxx(0) in detail. In Sec. V, we derive
the moments of height fluctuation in the stationary state
show that the PDF of (h2h̄) is strongly asymmetric, and w
prove that up to leading order thenth moments of (h2h̄),
i.e., ^(h2h̄)n&, can be written in terms of the second-ord
moment of height fluctuation in a nonintermittent way. W
determine all of the moments and show that the amplitu
of moments^(h2h̄)n(]xh)m& can be written in terms o
characteristics of singularities. We also derive the finite-s
effect on the moments of height differences and determ
02613
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the amplitudes of all correction terms. We have left the d
tails of the calculations to Appendixes A–E.

II. THE MASTER EQUATION FOR HEIGHT DIFFERENCE
AND HEIGHT GRADIENT

In this section, we consider the (111)-dimensional KPZ
equation and derive the master equation to describe the jo
PDF of height difference and height gradient, i.e.,P(h
2h̄,]xh), for givenn anda. It is shown that the equation fo
the joint PDF is not closed due to thelinear termn]2h. The
PDF of height difference is related to the joint PDF,P(h
2h̄,]xh,t), by the relation P(h2h̄,t)5*2`

` P(h

2h̄,]xh,t)d(]xh). We show that P(h2h̄,t) satisfies a
Fokker-Planck equation and we write down the explicit e
pression of drift and diffusion coefficientD (1) andD (2). It is
shown that the drift and the diffusion coefficients can
written in terms of the conditional average^(]xh)2uh2h̄&.

We consider a one-dimensional substrate of lengthL and a
surface of height fieldh(x,t) and its gradient]xh(x,t) at
time t. The (111)-dimensional KPZ equation governed o
the height fieldh(x,t) is defined in Eq.~1!, while u(x,t)5
2]xh(x,t) is a solution of the so-called Burgers equation

ut1auux5nuxx2 f x~x,t !, ~10!

where the covariance off is given by Eqs.~2! and ~3!. To
investigate the statistical properties of Eqs.~10! and ~1!, let
us define the generating functionZ(l,m,x,t) as

Z~l,m,x,t !5^exp„2 il@h~x,t !2h̄#2 imu~x,t !…&.
~11!

It follows from Eqs.~10! and~1! that the generating function
Z is a solution of the following equation:

Zt5 ig~ t !lZ2 il
a

2
Zmm2l2k~0!Z1

ial1nl2

m
Zm

2
nl

m
Zx2 iamS Zx

m D
m

1m2kxx~0!Z

2 imn^uxx exp„2 il~h2h̄!2 imu…&, ~12!

where k(x2x8)52D0D(x2x8), g(t)5h̄t , k(0)
5D0 /Aps, andkxx(0)522D0 /Aps3. To derive Eq.~12!,
we have used the following identities:

^hxx exp„2 il@h~x,t !2h̄#2 imu~x,t !…&5
2 i

m
$Zx1l]mZ%,

~13!

^ f ~x,t !exp„2 il@h~x,t !2h̄#2 imu~x,t !…&52 ilk~0!Z,
~14!

and

^ f x~x,t !exp„2 il@h~x,t !2h̄#2 imu~x,t !…&52 imkxx~0!Z,
~15!
2-3
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where we have used the fact thatDx(0)50. Evidently the
last term in Eq.~12! is not closed. Assuming statistical ho
mogeneity (Zx50), we have

2 imZt5glmZ2
a

2
lmZmm1 il2mk~0!Z

2 im3kxx~0!Z2 i ~nl21 ial!Zm

2m2n^uxx exp„2 ilh̃~x,t !2 imu~x,t !…&,

~16!

where h̃(x,t)5h(x,t)2h̄. Defining P(h̃,u,t) as the joint
probability density function ofh̃ and u, one can construc
P(h̃,u,t) in terms of the generating functionZ as

P~ h̃,u,t !5E E dl

2p

dm

2p
exp~ ilh̃1 imu!Z~l,m,t !.

~17!

It follows from Eqs.~17! and~16! that P(h̃,u,t) satisfies the
following equation:

2Put52gPh̃u2
a

2
~u2P! h̃u2a~uP! h̃2k~0!Ph̃h̃u

1kxx~0!Puuu2n~uP! h̃h̃2nE E dl

2p

dm

2p
exp~ ilh̃

1 imu!m2^uxx exp„2 ilh̃~x,t !2 imu~x,t !…&. ~18!

Now we can rewrite the last term in Eq.~18! as

nE E dl

2p

dm

2p
exp~ ilh̃1 imu!m2^uxx~x,t !

3exp„2 ilh̃~x,t !2 imu~x,t !…&

52n^uxx~x,t !d„h̃~x,t !2h̃…d„u~x,t !2u…&

52n$^uxxuu,h̃&P~u,h̃,t !%uu , ~19!

where ^ uu,h̃& denotes the average conditional on a giv
u,h̃. Therefore, using Eq.~19!, it follows that P(h̃,u,t) sat-
isfies the following equation:

2Put52gPhũ2
a

2
~u2P! h̃u2a~uP! h̃2k~0!Ph̃h̃u

1kxx~0!Puuu2n~uP! h̃h̃1n$^uxxuu,h̃&P~u,h̃,t !%uu .

~20!

This equation is exact for a givenn and clearly the trace o
the diffusion term leads again to an unclosed equation
P(h̃,u,t). Obtaining the functional form of the conditiona
averaging ^uxxuu,h̃& is one of the major difficulties in
the formulation. From Eq.~18! we see that P(u,h̃)
5P(2u,h̃), which results in
02613
r

^uuh̃&50 ~21!

for any givenn. In fact, for a givenh the average of heigh
gradient,u, is consequently zero. The identity proposed
Eq. ~21! is not restricted to any limiting asymptotic and
true in all regimes of the dynamical evolution of the surfac
Also Eq. ~20! allows us to determine an evolution equatio
for P(h2h̄). Doing so, we multiply Eq.~20! by u and inte-
grate overu from 2` to 1`, from which we get

] tP~ h̃,t !5
]

]h̃
H S a

2
~^u2&2^u2uh̃&!D P~ h̃,t !J

1
]2

]h̃2
$@k~0!2n^u2uh̃&#P~ h̃,t !%, ~22!

whereh̃5h2h̄ and the relationg5a/2^u2& is used. This is
a Fokker-Planck~FP! equation, describing the time evolutio
of P(h̃,t). The drift coefficient in the FP equation is

D ~1!52
a

2
~^u2&2^u2uh̃&! ~23!

and the diffusion coefficient reads

D ~2!5k~0!2n^u2uh̃& ~24!

Evidently, to obtainP(h2h̃) one should know the condi
tional averagê u2uh̃&. The equation has the following sta
tionary solution:

Pstat~ h̃!5
N

D ~2! expH E
h̃0

h̃
dh̃8D ~1!~ h̃8!/D ~2!~ h̃8!J , ~25!

whereN is the normalization coefficient. Therefore, to deri
the moments of height differenceh2h̄, i.e., ^(h2h̄)n&, we
need the conditional averaging^u2uh̃&. The simplified pic-
ture given by this equation indicates that all the knowled
to obtain the behavior of PDF is buried in the function
form of one conditional average, i.e.,^u2uh̃&. Although
simple, it is clear that the conditional average^u2uh̃& would
have a nontrivial dependence onn and L in the limit of n
→0. Instead of following this strategy, however, in the ne
section we follow another direct way of extracting the m
ments of height difference (h2h̄) in the strong-coupling
limit, i.e., n→0.

III. THE JOINT CORRELATIONS OF HEIGHT
DIFFERENCE AND HEIGHT GRADIENT
BEFORE SHARP VALLEY FORMATION

Whens is finite, the very existence of the nonlinear ter
in the KPZ equation leads to the development of the sh
valley singularities in afinite timeand in the strong-coupling
limit ( n→0). In one dimension, the system is already in t
strong-coupling regime, so starting from any finite value on
at large time, the system develops sharp valley singulari
2-4
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~Fig. 1!. Therefore, one would distinguish between differe
time regimes before and after the sharp valley formati
Starting from a flat initial condition, i.e.,h(x,0)50, u(x,0)
50 for a one-dimensional surface, which evolution is giv
by the inviscid KPZ equation (n→0), we know that after a
finite time the derivative of functionh(x,t) becomes singu-
lar. After this time scale, the diffusion term is important, b
we can neglect this term before the appearance of the si
larities. So the equation governing the evolution of the g
erating function,Z(m,l,t), before the creation of the shar
valleys is given by

Zt5 ig~ t !lZ2 il
a

2
Zmm2l2k~0!Z1

ial

m
Zm

2 iamS Zx

m D
m

1m2kxx~0!Z, ~26!

in which we have assumed the statistical homogeneityZx

50). Now we need theg, which is given byg5h̄t . Using
Eq. ~1!, we get

g~ t !5h̄t5
a

2
^u2&. ~27!

To evaluatê u2&, we setl50 in Eq. ~26! and find

Zt5m2kxx~0!Z, ~28!

FIG. 1. In the upper graph the sharp valley solution in the K
equation are demonstrated while in the lower one the correspon
shock structures in the Burgers equation are sketched. The vari

characterizing a sharp valley, namelyhx2 , hx1 , andh̃, are shown.
02613
t
.

t
u-
-

for which, consideringZ(m,0)51 as the initial condition, its
solution is

Z~m,t !5exp„m2kxx~0!t…. ~29!

On the other hand, by definition we havêu2&5
2„@]2Z(m,t)#/]m2

…m50 . So before the creation of the sin
gularities, the second moment of height gradient behave

^u2&522kxx~0!t, ~30!

so consequently,

g~ t !52akxx~0!t. ~31!

Inserting Eq.~31! into Eq. ~26! gives

]

]t
Z~m,l,t !52 ial

]2

]m2 Z~m,l,t !1 ia
l

m

]

]m
Z~m,l,t !

1@m2kxx~0!2 iakxx~0!tl2l2k~0!#

3Z~m,l,t !. ~32!

We solve Eq.~32! with the initial conditionZ(m,l,0)51,
from which by expanding the generating function in powe
of l andm we can obtain the moments^(h2h̄)n&, ^un&, and

^(h2h̄)num&. Changing the variablem to y5m2, converts
Eq. ~32! to the following equation:

]

]t
Z~y,l,t !522ialy

]2

]y2 Z~y,l,t !1 ial
]

]y
Z~y,l,t !

1@ykxx~0!2 iakxx~0!tl2l2k~0!#Z~y,l,t !.

~33!

Introducing the Fourier transform ofZ(y,l,t) with respect
to y asQ(q,l,t), it is simple to get the following evolution
equation satisfied by the Fourier transform:

]

]t
Q~q,l,t !52alq2

]

]q
Q~q,l,t !15alqQ~q,l,t !

2 ikxx~0!
]

]q
Q~q,l,t !2 iakxx~0!t

3lQ~q,l,t !2l2k~0!Q~q,l,t !, ~34!

with the initial condition

Q~q,l,0!5
1

2p E eiyqdy5d~q!. ~35!

Equation~34! is a first-order partial differential equatio
which can be solved by the method of characteristics. T
general solution of Eq.~34! is written as

ng
les
2-5
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Q~q,l,t !5gS l,
1

2

2tkxx~0!al1A22ikxx~0!al tanh21S qA2
2ial

kxx~0!
D

kxx~0!al
D

3expH 21/2E
0

qS 10als1 i tanh21S sA22ial

kxx~0!
DA22ikxx~0!al

2als22 ikxx~0!

1

2iakxx~0!tl22l2k~0!2 i tanh21S qA22ial

kxx~0!
DA22ikxx~0!al

2als22 ikxx~0!
D dsJ , ~36!

whereg is an arbitrary function of its arguments. Imposing the initial condition, given by Eq.~35!, and introducingv as

v5
1

2

tanh21S qA22ial

kxx~0!
DA22ikxx~0!al

kxx~0!al
, ~37!

we obtain

g~l,v!5dS 2
1

2
&Aikxx~0!

al
tanh@A2ikxx~0!alv# D expF 1/2E

0

21/2&Aikxx~0!/altanh@A2ikxx~0!alv#

3S 10als1 i tanh21S sA22ial

kxx~0!
DA22ikxx~0!al22ivkxx~0!al22l2k~0!

2als22 ikxx~0!
D dsG , ~38!

from which Q(q,l,t) is obtained as

Q~q,l,t !5g~l,t1v!expF 21/2E
0

q
10als1 i tanh21S sA22ial

kxx~0!
DA22ikxx~0!al

2als22 ikxx~0!

2

2ialkxx~0!t2 i tanh21S qA22ial

kxx~0!
DA22ikxx~0!al22l2k~0!

2als22 ikxx~0!
dsG . ~39!
in
le,
h

Inverse Fourier transforming of the solution in Eq.~39! is
straightforward, so after switching to variablem we get the
following solution forZ(m,l,t):

Z~m,l,t !5$12tanh2@A2ikxx~0!alt#%

3expH 2 5
8 ln$12tanh4@A2ikxx~0!alt#%

1 5
4 tanh21$tanh2@A2ikxx~0!alt#%2l2k~0!t

2 1
16 ln2S 12tanh@A2ikxx~0!alt#

11tanh@A2ikxx~0!alt#
D

2 1
2 im2A2ikxx~0!

al
tanh@A2ikxx~0!alt#J .

~40!
02613
Since we are interested in moments^(h2h̄)n&, setting
m50 in Eq. ~40! and expanding the generating function
powers of l enables us to obtain them all. For examp
expanding up toO(l7), it is easy to see that the first sixt
order of moments behaves as follows:

^~h2h̄!2&52 1
3 t@kxx~0!2a2t326k~0!#, ~41!

^~h2h̄!3&52 24
45 kxx~0!3a3t6, ~42!

^~h2h̄!4&52 101
105kxx~0!4a4t824t5kxx~0!2a2k~0!

112t2k~0!2, ~43!

^~h2h̄!5&52@ 2288
945 kxx~0!5a5t101 32

3 kxx~0!3a3t7k~0!#,
~44!
2-6
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^~h2h̄!6&52 1
10 395t

3@85 783kxx~0!6a6t9

1299 970kxx~0!4a4t6k~0!

1623 700kxx~0!2a2t3k~0!2

21 247 400k~0!3#. ~45!

The important content of the exact forms derived abov
that through it the time scale of sharp valley formation c

FIG. 2. Behavior of the time scales in which the moments^(h
2h̃)2n& become negative in terms ofn. The square points are ca
culated according to Eq.~40! while the solid line is the fitting curve
asymptotically tending to 1/4„k(0)/a2kxx

2 (0)…1/3.
02613
is
n

be found. One should first check the realizability conditio
i.e., P(h2h̄,t).0. In fact, the above moment relations ind
cate that different even-order moments becomenegativein
some distinct characteristic time scales. Closer inspectio
the even-moment relations reveals that the higher the
ments, the smaller are their characteristic time scales, so
asymptotically tend to1

4 t* for very large even moments
where t* 5@k(0)/a2kxx

2 (0)#1/3 ~see Fig. 2!. Therefore, we
conclude that after this time the far tails of the probabil
distribution function start to become negative, which is rem
niscent of sharp valley creation. This means that after
characteristic time scaletc5t/4* , one should also conside
the contribution of the relaxation term in the limit of vanis
ing diffusion in order to find a realizable probability densi
function of height field. In other words, disregarding the d
fusion term in the PDF equation is valid only up to the tim
scales in which the singularities are developed. Taking i
account thata.0, the odd-order moments are positive
time scales before the formation of sharp valleys. This me
that the probability densityP(h2h̄,t) in this time regime is
positively skewed. In Figs. 3–5, we have demonstrated
role of s on the time scale of the creation of singularitie
Substitutingkxx(0) andk(0) in the expression oft* gives us

t* 5( 1
4 )1/3(p)1/6D0

21a22/3s5/3. Hence the smaller thes, the
shorter the time scale of shock creation~see Figs. 3, 4, and 5!
@93#.

IV. THE EQUATION OF THE JOINT PDF OF HEIGHT
DIFFERENCE AND HEIGHT GRADIENT IN

THE STATIONARY STATE

Assuming the stationary state, we are interested in inv
tigating the stationary solutions of Eq.~20! in the limit
n

FIG. 3. Different time snap-
shots of gradient configuration
within system size, i.e.,2]xh.
The time scale for shock creatio
is demonstrated fors;L. The
solid points show the jumps in the
height gradient@93#.
2-7
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FIG. 4. Different time snap-
shots of gradient configuration
within system size, i.e.,2]xh.
The time scale for shock creatio
is demonstrated fors,L. The
solid points show the jumps in the
height gradient@93#.
a
th
rm
th
n→0. Of course in the stationary state the sharp valleys
fully developed and one should also take into account
diffusion term in the PDF equation. The complicated te
involved with the singularities can be overcome by using
method proposed in@73#. Let us define
02613
re
e

e

G~u,h̃,t !5 lim
n→0

n^uxxuu,h̃&P~u,h̃,t !

5 lim
n→0

n^uxx~x,t !d„h̃2h̃~x,t !…d„u2u~x,t !…&,

~46!
n

FIG. 5. Different time snap-
shots of gradient configuration
within system size, i.e.,2]xh.
The time scale for shock creatio
is demonstrated fors!L. The
solid points show the jumps in the
height gradient@93#.
2-8
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where in the last step in Eq.~46! we have used the definitio
of the joint PDFP(u,h̃,t). Assuming spatial ergodicity, th
average of the dissipative term can be expressed as

n^uxxuu,h̃&P~u,h̃,t !

5nK uxx~x,t !d„u2u~x,t !…d„h2h̃~x,t !…

5n lim
L→`

N

L

1

N E
2L/2

L/2

dx uxx~x,t !d„u2u~x,t !…

3d„h̃2h̃~x,t !…. ~47!

It is well known that theu field, which satisfies Burgers
equation, gives rise to discontinuous or shock solutions
the limit n→0. Consequently, for finites the shock solutions
are manifested in height field as a set of sharp valleys at
positions where the shocks are located, where they are
tinuously connected by some hill configurations~Fig. 1!. It is
noted thatuxx is zero at the positions where no sharp vall
exists. Therefore, in the limitn→0, only small intervals
around the sharp valleys will contribute to the integral in E
~47!. Within these intervals, boundary layer analysis can
used to obtain an accurate approximation ofu(x,t), h̃(x,t).
Generally, boundary layer analysis deals with the proble
in which perturbations are operative over very narrow
gions across which the dependent variables undergo
rapid changes. These narrow regions~sharp valley layers!
frequently adjoin the boundaries of the domain of intere
owing to the fact that a small parameter~n in the present
problem! multiplies the highest derivative. A powerfu
method for treating boundary layer problems is the meth
of matched asymptotic expansions. The basic idea unde
ing this method is that an approximate solution to a giv
problem is sought not as a single expansion in terms o
single scale, but as two or more separate expansions in t
of two or more scales, each of which is valid in part of t
domain. The scales are chosen so that the expansion
whole covers the whole domain of interest and the doma
of validity of neighboring expansions overlap. In order
handle the rapid variations in the sharp valley layers,
define a suitable magnified or stretched scale and expan
functions in terms of it in the sharp valley regions. For th
purpose, we splitu andh into a sum of an inner solution nea
the sharp valleys and an outer solution away from the sh
valleys, and we use systematic matched asymptotics to
struct a uniform approximation ofu and h̃. For the outer
solution, we look for an approximation in the form of a s
ries in n,

u5uout5u01nu11O~n2!,
~48!

h̃5h̃out5h̃01nh̃11O~n2!,

whereu0 andh̃0 satisfy the Burgers and KPZ equation wit
out the dissipation term,

u0t1au0u0x52 f x ,

~49!
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h̃0t2
a

2
~]xh̃0!25 f .

In order to deal with the inner solution around the sha
valley, let y5y(t) be the position of a sharp valley, defin
the stretched variablez5(x2y)/n, and let

uin~x,t !5vS x2y

n
1d,t D ,

~50!

h̃in~x,t !5h̃S x2y

n
1d,t D .

The parameterd is a perturbation of the sharp valley po
sition andv and h̃ satisfy the following equations:

nv t2a~ ū2nh!vz1avvz5vzz2 f z~z,t !,
~51!

n2h̃t2nūh̃z1hn2h̃z2
a

2
~ h̃z!

25nh̃zz1n2f ~z,t !.

where ū5(1/a)(dy/dt)5(u11u2)/2, (h5(1/a)(dd/dt),
andu1 , u2 are the height gradients on the in right-hand a
left-hand sides of the sharp valley in the positiony ~see Fig.
1!. We look for a solution in the form

v5v01nv11O~n2!,
~52!

h̃5h̃01nh̃11O~n2!.

To leading order we get forn0 and h̃0

h̃0z50,
~53!

a~v02ū!v0z5v0zz,

where we have assumed that the variance off (z,t) is a
smooth function so that we can neglect its variation in
sharp valley region (f z50). In other words, we suppose th
s@O(n) ~i.e., s @ the typical layer width!. One can easily
integrate Eq.~53! and find that

h̃05const,

v05ū2
s

2
tanhS asz

4 D ,

in whichs5s(t)5u12u2 is the shock strength. The bound
ary condition for the second equation arises from the ma
ing condition,

lim
z→6`

v0
in5 lim

x→y
u0

out5ū6
s

2
. ~54!

Basicallyh̃0
in(z)5C2n*zv0

in(z8)dz8, whereC is the integra-
tion constant. Therefore, theO(1) solutions ofv0

in give rise

to O(n) solutions in theh̃0
in field and only the integration

constant is theO(1) part of the solution ofh̃0
in . In fact, the
2-9
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constant is merely the height value at the sharp valley p
tion. Of course due to the height continuity at the sharp v
ley position there is no boundary layer for the KPZ equati
meaning that the rapid changing term in the sharp va
layer occurs inhxxx while the highest derivative in the KPZ
equation involves onlyhxx . The above analysis shows tha
to O(n), Eq. ~47! can be estimated as

lim
n→0

n@^uxxuu,h̃&P~u,h̃,t !#

5 lim
n→0

n lim
L→`

N

L

1

N (
j
E

V j

dx uxx
in d„u2uin~x,t !…

3d„h̃2h̃in~yj ,t !…

5 lim
L→`

N

L

1

N (
j
E

2`

`

dz uzz
ind„u2uin~z,t !…

3d„h̃2h̃in~yj ,t !…

5 lim
L→`

N

L

1

N (
j
E

2`

`

dzv0zz
in d~u2v0!d„h̃2h̃~yj ,t !…,

~55!

whereV j is a layer located atyj with width @O(n). Using
Eq. ~53! and

dzv0zz5dv0

v0zz

v0z
5adv0~v02ū!, ~56!

thez integral can be evaluated exactly leading to the follo
ing result:

n^uxxuu,h̃&P~u,h̃,t !5aE dūE
2`

0

dsr~ ū,s,h̃,x,t !E
ū1~s/2!

ū2~s/2!

3dv0~v02ū!d~u2v0!. ~57!

%(ū,s,h̃,x,t) is defined such that%(ū,s,h̃,t)dū ds dh̃dx
gives the average number of valleys in@x,x1dx) with
ū(y,t)P@ ū,ū1dū), s(y,t)P@s,s1ds), and h̃(y,t)P@ h̃,h̃
1dh̃), where yP@x,x1dx) is the sharp valley location
Equation~57! indicates that the relaxation term in the stron
coupling limit can be written in terms of some quantiti
which are defined in singularities~valleys!. Indeed we char-
acterize a sharp valley with four quantities, its locationyj ,
its gradients atyj 01

~i.e., u1!, yj 02 ~i.e., u2!, and its height

from theh̄, i.e., h̃ j . Instead ofu1 andu2 , we have used the
quantitiesū5(u11u2)/2 ands5s(t)5u12u2 . Later we
will determine the time evolution equations which gove
these four quantities.

Proceeding further, we note that%(ū,s,h̃,x,t) can be de-
fined as
02613
i-
l-
,
y

-

-

%~ ū,s,h̃,x,t !5K (
j

d„ū2ū~yj ,t !…d„s2s~yj ,t !…d„h̃

2h̃~yj ,t !…d~x2yj !L . ~58!

Due to statistical homogeneity, the sharp valley’s charac
istics are independent of their location, so

%~ ū,s,h̃,x,t !5rS~ ū,s,h̃,t !, ~59!

in which r5r(t) is the number density of shocks an
S(ū,s,h̃,t) is the PDF of„ū(y0 ,t),s(y0 ,t),h̃(y0 ,t)… condi-
tional ony0 being a shock location. Hence

lim
n→0

n^uxxuu,h̃&P~u,h̃,t !

52arE
2`

0

dsE
u1~s/2!

u2~s/2!

dū~u2ū!S~ ū,s,h̃,t !.

~60!

Therefore, the relaxation~dissipative! contribution in Eq.
~20! is written as

G~u,h̃,t !52S arE
2`

0

dsE
u1~s/2!

u2~s/2!

dū~u2ū!S~ ū,s,h̃,t ! D
uu

~61!

So Eq.~20! is rewritten in the form

2Put52gPh̃u2
a

2
~u2P! h̃u2a~uP! h̃2k~0!Ph̃h̃u

1kxx~0!Puuu1G~u,h̃,t !. ~62!

It is interesting that theG term comes from the relaxatio
term in the KPZ equation, but its explicit expression in term
of the sharp valley’s characteristics is proportional toa,
which is the coefficient of the nonlinear term in the KP
equation. This indicates that without the nonlinear term
the KPZ equation there is no finite contribution for the d
fusion term in the PDF equation whenn→0. Although this
equation is exact for finites, we cannot solve it since the las
term is not expressed in terms ofP(u,h̃,t). Despite the ex-
istence of an unclosedG term, we can still derive interesting
information about the moments using the above equation.
will study comprehensively the moments of height differen
and height gradient, i.e.,^(h2h̄)n(]xh)m&, in the next sec-
tion.

It is worth mentioning that integration overh̃ gives an
equation for the PDF ofu recovering the results in@73#,

Rt52kxx~0!Ruu1H raE
2`

0 E
u1~s/2!

u2~s/2!

dū~u2ū!S~ ū,s,t !J
u

,

~63!
2-10
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whereR(u,t)5*P(u,h̃,t)dh̃ andS(ū,s,t)5*S(ū,s,h̃,t)dh̃
is the PDF of„ū(y0 ,t),s(y0 ,t)…, conditional on the property
that y0 is the singularity position. Because of the statistic
homogeneity,y0 is a dummy variable. We finish the sectio
by determining the relation between the density of valle
and the noise characteristicsk(0) andkxx(0), that is,

kxx~0!5
ar

12
^s3&, ~64!

indicating that the forcing variancekxx(0) is related to the
products of the density of valleysr, ^s3&, anda. This rela-
tion has been found in@73# and its details are given in th
Appendix B.

V. THE MOMENTS OF HEIGHT FLUCTUATION IN
THE STATIONARY STATE

Our goal is to investigate the scaling behavior of mome
of height difference and height gradient in the station
state. After sharp valley formation, the lateral correlatio
produced by the nonlinear term will grow with time. Th
dynamic scaling exponentz characterizes the self-similar la
eral growth. However, in the stationary state the height fi
width saturates in the sense that lateral correlations are
average grown up to the system size. As it was explain
after the saturation the width scales asw0(L,t@Lz);Lx.
Having in our disposal the exact resultx5 1

2 in one dimen-
sion@89#, it will be natural to defineP(h8,u,t) as the PDF of
h8, u, and t, where h85h̃)/w0 and w05L1/2. Obviously
P(h8,u,t) is related to P(h̃,u,t) as P(h8,u,t)
5w0P(h̃,u,t). From Eq.~62!, it follows that P(h8,u,t) in
the stationary state satisfies the following equation:

2gL21/2Ph8u2
a

2
L21/2~u2P!h8u2aL21/2~uP!h8

2k~0!L21Ph8h8u1kxx~0!Puuu1G~u,h8,t !50.

~65!

From Eq.~65! it follows that the moments of̂h8num& satisfy
the following equation in the stationary state:

gn,m1kxx~0!m~m21!~m22!^h8num23&

1mn~n21!k~0!L21^h8n22um21&

2mngL21/2^h8n21um21&

2n~m22!
a

2
L21/2^h8n21um11&50, ~66!

where

gn,m5E dh8E du h8numG~u,h8,t !. ~67!

Using Eq.~61!, we can determine the explicit expression
gn,m in terms of the characteristics of valleys. Thus we fi
02613
l

s

s
y
s

d
on
d,

f

gn,m52arE dh8E duh8n

3umS E
2`

0

dsE
u1~s/2!

u2~s/2!

dū~u2ū!S~ ū,s,h8,t ! D
uu

.

~68!

After integrating by parts, it converts to

gn,m52arE dh8E du h8nm~m21!um22

3S E
2`

0

dsE
u1~s/2!

u2~s/2!

dū~u2ū!S~ ū,s,h8,t ! D
52arm~m21!E

2`

0

dsE dh8h8nE du um22

3S E
u1~s/2!

u2~s/2!

dū~u2ū!S~ ū,s,h8,t ! D . ~69!

It can be integrated overu, which leads to the following
expression forgn,m ~see Appendix B!:

gn,m5
ar

2m $^hv8
n~2ū1s!m21@~m21!s22ū#&

1^hv8
n~2ū2s!m21@~m21!s12ū#&%, ~70!

wherehv85(hv2h̄)/w0 andhv is the height of a given sharp
valley. This means that the relaxation term in the stron
coupling limit can be written in terms ofonly characteristics
of the valleys, i.e.,ū, s, andhv .

At statistical steady state (t→`,^ & t50) and using the
scale independence ofgn,m’s ~see Appendix E!, we derive, to
leading order and in the limit ofL→`, from Eq. ~66!,

K S h2h̄

w0
D n

um23L 52
gn,m

kxx~0!m~m21!~m22!
~71!

for m>3. For instance, settingn50 causes the height gra
dient moments to behave as@73#

^um&5
ar

2m13kxx~0!~m11!~m12!~m13!

3$^~2ū2s!m12@~m12!s12ū#&

2^~2ū1s!m12@2ū2~m12!s#&%, ~72!

and form53 we find

^~h2h̄!n&5
gn,3

6kxx~0!
Ln/2, ~73!

where, using Eq.~70!, we havegn,35(ar/2)^h8ns3&. The
fact that gnm’s, up to leading order, are scale-independe
implies that Eq.~73! builds up a relation between thenth
moments of height difference in terms of the second mom
w0 in a nonintermittent way. This means thenth-order mo-
2-11
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ment is scaled linearly with ordern. To verify the scale in-
dependence ofgn,m’s, one should look at the statistics of th
sharp valley environment and the different processes
volved in the sharp valley creation and annihilation, whi
contribute dynamically. We have comprehensively explain
the related arguments in Appendix E. Equation~66! also sug-
gests that the amplitudes of height difference and height
dient moments depend strongly on the singular structure
the theory, encoded in the functionsgn,m @i.e., Eq.~70!#. At
this stage, we find the finite-size effects on the moments
Sn,m5^h8num&. Defining e51/L1/2 as a perturbative param
eter, we find the structure functionsSn,m5^h8num& perturba-
tively in terms of small parametere51/L1/2 as

Sn,m5^h8num&5Sn,m
~0! 1eSn,m

~1! 1e2Sn,m
~2! 1¯ . ~74!

Using Eqs.~66!, ~74!, and the scale independence ofgnm ,
we get

Sn,m
~0! 5

1

kxx~0!~m11!~m12!~m13!
gn,m13 ,

Sn,m
~1! 5

1

kxx~0!~m11!~m12!~m13!

3H gn~m13!

kxx~0!~m13!~m14!~m15!
gn21,m15

1
an~m11!

2kxx~0!~m15!~m16!~m17!
gn21,m17J ,

~75!

Sn,m
~2! 5

1

kxx~0!~m11!~m12!~m13!

3S gn~m13!Sn21,m14
~1! 1

a

2
n~m11!Sn21,m14

~1!

2k~0!n~n21!~m13!Sn22,m12
~0! D , ~76!

etc. For example, the moments^(h2h̄)n& behave as

^~h2h̄!n&5Ln/2H 1

3!kxx~0!
gn,3

1
1

L1/2 S 2
gn

5!kxx~0!2 gn21,52
2an

7!kxx~0!2 gn21,7D
1

1

L S k~0!n~n21!

5!kxx~0!2 gn22,51
g2n~n21!

7!kxx~0!3 gn22,7

2
11agn~n21!

9!kxx~0!2 gn22,92
40a2n~n21!

11!kxx~0!2 gn22,11D
1O~L23/2!J . ~77!
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Noting thatgn21,5 andgn21,7 are not zero, we conclude tha
the next-to-leading-order correction for the structure fun
tions isO(1/L1/2). Also, Eq.~77! shows that the amplitude o
the correction terms to moments^(h2h̄)n& is related to the
statistics of quantities which are defined on the singularit
i.e., gn,m . Also it shows that all of the moments^(h2h̄)n&
~for even and oddn! exist and consequently the PDF of th
h2h̄ is not symmetric. However, using the properties of t
Burgers equation, it can be shown that only even moment
u are nonzero and all the odd moments vanish, hence
PDF of u is symmetric.

Equation~72! enables us to determine the rate of surfa
growth at the stationary state, i.e.,h̄t . Using the KPZ equa-
tion, it is trivial to see that

lim
t→`

g~ t !5h̄t5
a

2
^u2&1nr^s&, ~78!

where we have used the fact that^hxx&52^ux&52r^s&
@73#. In the limit n→0, the second term vanishes and

lim
t→`

g~ t !5h̄t5
a

2
^u2&. ~79!

Going back to Eq.~72!, the h̄t is written in terms of the
properties of the singularities as

h̄t5
a2r

245!kxx~0!
$^80ū2s314s5&%. ~80!

So in the stationary state, moments^ū2s3& and ^s5& deter-
mine the growth rate. In other words, for a given time in t
steady state, if one gets the moments^ū2s3& and^s5&, which
are defined only on the valleys, he can predict the rate
surface growth. This provides a simple way to determine
h̄t in the stationary state. Now we prove thatP(h8,u,t
→`,L→`)5P(h8,u) is a positive and normalizable PDF
To show the positivity of the PDF, we note that Eq.~B1!
indicates thatP(h8,u) satisfies the following equation in th
limit of L→`:

kxx~0!Puuu5S arE
2`

0

dsE
u1~s/2!

u2~s/2!

dū~u2ū!S~ ū,s,h̃,t ! D
uu

.

~81!

Taking advantage of the method introduced in Sec. III, o
may obtain

P~h8,u!52
ar

2kxx~0!
E

2`

0

dsE
u1~s/2!

u2~s/2!

3dūS s2

4
2~u2ū!2DS`~ ū,s,h8!, ~82!

whereS`(ū,s,h8) is the PDF of valleys withū, s, andh8.
Therefore, positivity ofS`(ū,s,h8) implies that P(h8,u)
>0. To check the normalizability of theP(h8,u), consider
Eq. ~71! with n50, m53, leading to
2-12
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E dh8du P~h8,u,t !5
1

3!kxx~0!
g0,3, ~83!

where the explicit form ofg0,3 can be found from Eq.~70!.
The result isg0,35(ar/2)^s3&. Now combining with Eq.
~B15! gives

E dh8du P~h8,u,t→`,L→`!51, ~84!

so the proof of normalizability of the stationary state PD
P(h8,u) is completed.

VI. CONCLUSION

We study the problem of nonequilibrium surface grow
described by the forced KPZ equation in (111) dimensions.
The forcing is a white in time Gaussian noise but with
Gaussian correlation in space. Modeling a short-range co
lated noise, we restrict our study to the case when the co
lation length of the forcing is much smaller than the syst
size. In the nonstationary regime when the sharp va
structures are not yet developed, we find an exact form
the generating function of the joint fluctuations of height a
height gradient. We determine the time scale of the sh
valley formation and the exact functional form of the tim
dependence in the height difference moments at any g
order. Investigating the stationary state, we give a gen
expression of the mixed correlations of height and hei
gradient at any order, in terms of the quantities which ch
acterize the sharp valley singular structures. Through a c
ful analysis of the behavior of the sharp valley environme
we derive the general finite-size corrections to the scaling
an arbitrarynth moment, i.e.,̂ (h2h̄)n&, at any order. Re-
cently, Marinariet al. @23# have obtained the corrections
the leading-order scaling in dimensionsD52,3,4, in a high-
resolution simulation on the RSOS discrete model, which
believed to be in the universality class of the KPZ equat
stirred with a white in time Gaussian noise andd-correlated
in space. Hence they get

wn~L !;AnLnx~11BnL2vn!. ~85!

Irrespective of the dimension and moment ordern, they
observe the same subleading exponentvn always very close
to unity ~see also@91,92#!. Through our calculations, we suc
ceed in obtaining the finite-size corrections analytica
However, we have to remark that, due to working with fin
correlated forcing, a firm comparison between our res
and numerical simulations is not possible. More precisely
the present paper the limiting ofn→0 is taken into accoun
only whens is finite. Still the forcing correlation length is
much smaller than the system size and height correla
length. But the limiting ofs→0 is a singular limit in our
calculations, and moreover, it is nota priori clear that the
limits of n→0 ands→0 commute at all. However, due t
the scale independence ofgn,m’s, Eq. ~77! shows the genera
correction terms for thenth-order moment, all having the
same subleading exponentvn5 1

2 . The amplitudesAn andBn
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in Eq. ~85! are given explicitly in terms of the functionsgn,m

defined on the sharp valley singularities. The next step,
for the future, would be the calculation ofgn,m’s in terms of
few known parameters, i.e., the forcing and diffusion coe
cients.

Our analysis enables us to find the stochastic equat
which are governed over the dynamics of quantities cha
terizing the sharp valley singularities too. This translates
stationary nonequilibrium dynamics of the surface in ter
of the dynamics of singularities in the stationary state. Wh
the system crosses over the timetc, after which the first
singularities are formed, it would be an important study
analyze the shape deformation of nonstationary height P
P(h8,t) in time. We believe that the analysis followed in th
paper is quite suitable for the zero-temperature limit in
problem of a directed polymer in the random potential w
short-range correlations@88#. The same method applied t
the KPZ equation in higher dimensions would definitely
one of the goals of the present work. The main message
might be encoded in the present work is the importance
the statistical properties of the geometrical singular str
tures for understanding the strong-coupling regime of
Kardar-Parisi-Zhang equation in higher dimensions.
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APPENDIX A: AN ALTERNATIVE METHOD FOR
DETERMINING THE MOMENTS OF HEIGHT
FLUCTUATION BEFORE THE FORMATION

OF THE SINGULARITIES

In this appendix, we give the details of calculations of t
scaling behavior of moments of height difference before
formation of singularities. We know that the generating fun
tion Z(m,l,t) satisfies the following equation when (n
→0):

Zt5 iglZ2
ila

2
Zmm2l2k~0!Z1

ial

m
Zm1m2kxx~0!Z.

~A1!

Let us writeZ(m,l,t) as follows:
2-13
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Z~m,l,t !ª@11A~ t !l21C~ t !l31F~ t !l41G~ t !l5

1J~ t !l61M ~ t !l71B~ t !lm21D~ t !l2m2

1E~ t !lm41H~ t !l3m21K~ t !l2m41L~ t !l4m2

1N~ t !l5m21P~ t !l3m41Q~ t !lm6#

3exp„@2l2k~0!1m2kxx~0!#t…. ~A2!

Now expandingZ(m,l,t) as a series ofm,l and substi-
tuting it in Eq. ~A1!, we equate the terms in different orde
of m,l ending with some coupled differential equations go
erned over the coefficients introduced in the definition oZ
in Eq. ~A1!. So we have

]

]t
A~ t !5 iaB~ t !, ~A3!

]

]t
B~ t !522iakxx~0!2t2, ~A4!

]

]t
C~ t !5 iaD~ t !, ~A5!

]

]t
D~ t !524iakxx~0!tB~ t !22iaE~ t !, ~A6!

]

]t
E~ t !50, ~A7!

]

]t
F~ t !5 iaH~ t !, ~A8!

]

]t
H~ t !524iakxx~0!tD~ t !22iaK~ t !22iakxx~0!2t2A~ t !,

~A9!
as

02613
-

]

]t
K~ t !522iakxx~0!2t2B~ t !28iakxx~0!tE~ t !29iaQ~ t !,

~A10!

]

]t
Q~ t !50. ~A11!

By solving these differential equation
with the initial conditions that
A(t),B(t),C(t),D(t),E(t),F(t),H(t),K(t),Q(t) are zero at
t50, we find

A~ t !5 1
6 a2kxx~0!2t4, ~A12!

B~ t !52 2
3 iakxx~0!2t3, ~A13!

C~ t !5 4
45 ia3kxx~0!3t6, ~A14!

D~ t !5 8
15 a2kxx~0!3t5, ~A15!

E~ t !50, ~A16!

F~ t !52 101
2520a

4kxx
4 t8, ~A17!

H~ t !5 101
315 ia3kxx

4 t7, ~A18!

K~ t !52 2
9 a2kxx~0!4t6, ~A19!

Q~ t !50. ~A20!

By replacing these expressions in Eq.~A2!, we find
Z(m,l,t) as a function ofm,l,t explicitly without any un-
known terms or expressions. Now if we expand the origi
form of the generating functionZ(m,l,t) as a series inm,l,
we find
Z~m,l,t !5^exp$2 il@~h2h̄!#2 im@]x~h2h̄!#%&

52 1
720u6m62 1

120~h2h̄!u5m5l2 1
48 ~h2h̄!2u4m4l22 1

36 ~h2h̄!3u3m3l32 1
48 ~h2h̄!4u2m2l4

2 1
120~h2h̄!5uml52 1

720~h2h̄!6l62 1
120 iu5m52 1

24 i ~h2h̄!u4m4l2 1
12 i ~h2h̄!2u3m3l22 1

12 i ~h2h̄!3u2m2l3

2 1
24 i ~h2h̄!4uml42 1

120 i ~h2h̄!5l51 1
24 u4m41 1

6 ~h2h̄!u3m3l1 1
4 ~h2h̄!2u2m2l21 1

6 ~h2h̄!3uml3

1 1
24 ~h2h̄!4l41 1

6 iu3m31 1
2 i ~h2h̄!u2m2l1 1

2 i ~h2h̄!2uml21 1
6 i ~h2h̄!3l32 1

2 u2m22~h2h̄!uml

2 1
2 ~h2h̄!2l22 ium2 i ~h2h̄!l11. ~A21!
Equating the coefficients of Eqs.~A2! and ~A21!
proportional to the same powers inm and l and
replacing the expressions ofA(t),B(t),C(t),D(t),
E(t),F(t),H(t),K(t),Q(t), we get the same expressions
given before, i.e.,
^~h2h̄!2&52 1
3 t@kxx~0!2a2t326k~0!#, ~A22!

^~h2h̄!3&52 24
45 kxx~0!3a3t6, ~A23!
2-14
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^~h2h̄!4&52 101
105kxx~0!4a4t824t5kxx~0!2a2k~0!

112t2k~0!2. ~A24!

APPENDIX B: PROOF OF THE RELATION
BETWEEN r AND ŠS3

‹

We consider the statistical steady state, i.e.,Rt50, so that
Eq. ~63! can be written as follows:

Ruu5
1

kxx~0!
G~u,t !

5
ar

kxx~0! S E
2`

0

dsE
u1~s/2!

u2~s/2!

dū~u2ū!S~ ū,s,t ! D
u

.

~B1!

We integrate Eq.~B1! with respect tou and find

Ru5
ar

kxx~0!
E

2`

0

dsE
u1~s/2!

u2~s/2!

dū~u2ū!S~ ū,s,t !. ~B2!

At the large time limit (t→`), we denoteR andSasR` and
S`(ū,s). Therefore,

R`5
ar

kxx~0!
E

2`

u

duE
2`

0

dsE
u1~s/2!

u2~s/2!

dū~u2ū!S`~ ū,s!.

~B3!

To determineR` , we define the functionK(u) as follows:

K~u!5
ar

kxx~0!
E

2`

0

dsE
u1~s/2!

u2~s/2!

dū
~u2ū!2

2
S`~ ū,s!.

~B4!

Differentiating the above equation with respect tou gives us

d

du
K~u!5

ar

kxx~0!
E

2`

0

dsE
u1~s/2!

u2~s/2!

dū~u2ū!S`~ ū,s!

1
ar

kxx~0!
E

2`

0

ds
s2

8
S`S u2

s

2
,sD

2
ar

kxx~0!
E

2`

0

ds
s2

8
S`S u1

s

2
,sD . ~B5!

Now we integrate Eq.~B5! over u from 2` to u and find

E
2`

u

du
d

du
K~u!

5
ar

kxx~0!
E

2`

u

duE
2`

0

dsE
u1~s/2!

u2~s/2!

dū~u2ū!

1S`~ ū,s!
ar

2kxx~0!
E

2`

u

duE
2`

0

ds
s2

4
S`S u2

s

2
,sD

2
ar

2kxx~0!
E

2`

u

duE
2`

0

ds
s2

4
S`S u1

s

2
,sD . ~B6!
02613
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K~u!2K~2`!5R`~u!1
ar

2kxx~0!
E

2`

0

dsE
2`

u2~s/2!

3dū
s2

4
S`~ ū,s!2

ar

2kxx~0!
E

2`

0

3dsE
2`

u1~s/2!

dū
s2

4
S`~ ū,s!. ~B7!

According to the definition ofK(u), we see thatK(2`)
→0 ~the shock probability density function goes to zero
this limit! and therefore we find the following relation be
tweenK(u) andR`(u):

K~u!5R`~u!1
ar

2kxx~0!
E

2`

0

dsE
u1~s/2!

u2~s/2!

dū
s2

4
S`~ ū,s!.

~B8!

Using Eqs.~B4! and ~B8!, we find an explicit relation be-
tween theR` andS`(ū,s) as follows:

R`~u!52
ar

2kxx~0!
E

2`

0

dsE
u1~s/2!

u2~s/2!

dūS s2

4
2~u2ū!2D

3S`~ ū,s!. ~B9!

Assuming S`(ū,s)>0, it becomes evident that the abov
integral would give a realizable portability density for heig
gradient, that is,R`>0. For finites, Eq. ~B9! gives us the
PDF of height gradient in the KPZ equation in the stron
coupling limit. The functionR`(u) enables us to determin
the relation between the valleys densityr and kxx(0). We
would integrate overu from R` , so we define another func
tion K1(u) such that

K1~u!52
ar

2kxx~0!
E

2`

0

dsE
u1~s/2!

u2~s/2!

dūS s2

4
u2

~u2ū!3

3 D
3S`~ ū,s!, ~B10!

where differentiatingK1(u) with respect tou gives

d

du
K1~u!52

ar

2kxx~0!
E

2`

0

dsE
u1~s/2!

u2~s/2!

3dūS s2

4
2~u2ū!2DS`~ ū,s!

2
ar

2kxx~0!
E

2`

0

dsS s2

4
u2

s3

24DS`S u2
s

2
,sD

1
ar

2kxx~0!
E

2`

0

dsS s2

4
u1

s3

24DS`S u1
s

2
,sD .

~B11!

Now integrating the above equation overu from 2` to 1`
gives
2-15
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K1~1`!2K1~2`!5E
2`

1`

du R̀ ~u!2
ar

2kxx~0!
E

2`

1`

3duE
2`

0

dsFs2

4 S u1
s

2D2
s3

24GS`~u,s!

1
ar

2kxx~0!
E

2`

1`

duE
2`

0

3dsFs2

4 S u2
s

2D1
s3

24GS`~u,s!.

~B12!

Using the fact thatK1(1`)5K1(2`)50, we obtain

E
2`

1`

du R̀ ~u!52
ar

2kxx~0!
E

2`

1`

duE
2`

0

dsS s2

4
u2

s3

12D
3S`~u,s!1

ar

2kxx~0!
E

2`

1`

duE
2`

0

3dsS s2

4
u1

s3

12DS`~u,s!, ~B13!

in which the sum of the terms on the right-hand side giv

E
2`

1`

du R̀ ~u!5
ar

12kxx~0!
^s3&. ~B14!

Thus from the requirement thatR` be normalized to unity,
we get

kxx~0!5
ar

12
^s3&. ~B15!

APPENDIX C: DERIVATION OF THE FINITE
CONTRIBUTION OF THE RELAXATION TERM IN

THE STATIONARY STATE

In this appendix, we give the details of calculations
gn,m in Eq. ~70!. To computegnm , we introduce

K~u!52m~m21!arE
2`

0

dsE
2`

`

dh8h8nE
u2~s/2!

u1~s/2!

3dūH um21

m21
ū2

um

m J S~ ū,s,h8,t !. ~C1!

By differentiatingK(u) and integrating in the whole range o
u, we have
02613
f

E
2`

` dK~u!

du
du5gnm2m~m21!arE

2`

0

dsE
2`

`

dh8h8nE
2`

`

3duH um

m
2

um21

m21S u2
s

2D J SS u2
s

2
,s,h8,t D

2m~m21!arE
2`

0

dsE
2`

`

dh8h8nE
2`

`

3duH um

m
2

um21

m21S u1
s

2D J SS u1
s

2
,s,h8,t D .

~C2!

Since K(1`)5K(2`)50, the left-hand side vanishes
therefore

gnm5m~m21!arE
2`

0

dsE
2`

`

dh8h8nE
2`

`

3dūS S ū1
s

2D m

m
2

S ū1
s

2D m21

m21
ūD S~ ū,s,h8,t !

2m~m21!arE
2`

0

dsE
2`

`

dh8h8nE
2`

`

3dūS S ū2
s

2D m

m
2

S ū2
s

2D m21

m21
ūD S~ ū,s,h8,t !

5
r

2m E
2`

0

dsE
2`

`

dūE
2`

`

dh8h8n$~2ū1s!m21

3@~m21!s22ū#1~2ū2s!m21

3@~m21!s12ū#%S~ ū,s,h8,t !, ~C3!

which finally leads to Eq.~70!.

APPENDIX D: DYNAMICS OF QUANTITIES WHICH ARE
DEFINED ON THE SHARP VALLEYS

In this appendix, we determine the equation of motion
ū(yj ,t),s(yj ,t),h̃(yj ,t) along the sharp valley, which is
located at positionyj at time t. Using the KPZ equation
and its differentiation byx around the sharp valley at positio
yj , one can find a set of equations forh1(yj ,t)
5 lime201h(yj1e,t), h2(yj ,t)5 lime→01h(yj2e,t),
u1(yj ,t)5 lime→01u(yj1e,t), and u2(yj ,t)
5 lime→01u(yj2e,t) as follows:

h1t~yj ,t !5
a

2
u1

2 ~yj ,t !1 f ~yj ,t !, ~D1!

h2t~yj ,t !5
a

2
u2

2 ~yj ,t !1 f ~yj ,t !, ~D2!

u1t~yj ,t !52au1~yj ,t !u1x~yj ,t !2 f x~yj ,t !, ~D3!
2-16
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u2t~yj ,t !52au2~yj ,t !u2x~yj ,t !2 f x~yj ,t !. ~D4!

To determine thed/dt$ū,s,h̃% we use the following identity
@73,84#:

d

dt
u1~yj ,t !5

dyj

dt
u1x~yj ,t !1u1t~yj ,t !

5aū~yj ,t !u1x~yj ,t !

2au1x~yj ,t !u1~yj ,t !2 f x~yj ,t !

52
a

2
s~yj ,t !u1x~yj ,t !2 f x~yj ,t !, ~D5!

whereū5(1/a)(dyj /dt). Similarly,

d

dt
ū~yj ,t !5

a

2
s~yj ,t !u2x~yj ,t !2 f x~yj ,t !. ~D6!

These equations can be rewritten as

d

dt
ū~yj ,t !52

a

4
s~u1x2u2x!2 f x ,

~D7!
d

dt
s~yj ,t !52

a

2
s~u1x1u2x!,

where we will give the equations forū and s. Since u5
2hx , we write the above equations in terms of the curvat
of the surface on the right and left sides of the sharp valle
positionyj as

d

dt
ū~yj ,t !5

a

4
s~h1xx2h2xx!2 f x ,

~D8!
d

dt
s~yj ,t !5

a

2
s~h1xx1h2xx!.

To determine the time evolution ofh̃5h2h̄, we use the
KPZ equation by which one can easily show thath1(yj ,t)
andh2(yj ,t) satisfy

d

dt
h1~yj ,t !5

dyj

dt
h1x~yj ,t !1h1t~yj ,t !,

~D9!
d

dt
h2~yj ,t !5

dyj

dt
h2x~yj ,t !1h2t~yj ,t !.

By definition, we have (d/dt)h(yj ,t)5 1
2 @(d/dt)h1

1(d/dt)h2#, so using the equation forh1 andh2 ,

d

dt
h~yj ,t !52

a

8
~4ū22s2!1 f ~D10!

and

d

dt
h̃~yj ,t !52

a

8
~4ū22s2!1 f 2g, ~D11!
02613
e
at

whereh̃(yj ,t)5h(yj ,t)2h̄ and h̄t5g.
Therefore, in summary we have the following set of equ

tions for a given sharp valley in the KPZ problem in the lim
n→0:

dyj

dt
5aū,

d

dt
ū~yj ,t !5

a

4
s~h1xx2h2xx!2 f x ,

~D12!
d

dt
s~yj ,t !5

a

2
s~h1xx1h2xx!,

d

dt
h̃~yj ,t !52

a

8
~4ū22s2!1 f 2g.

APPENDIX E: STATISTICS FOR THE ENVIRONMENTS
OF THE SINGULARITIES

In this appendix, we derive the PDF of quantities whi
characterize the sharp valleys. As is depicted in Fig. 2
formerly described, the evolution of the surface after the f
mation of singularities is determined by the dynamics of
sharp valleys and their statistical properties. In a more qu
titative sense, one should attempt to characterize the t
evolution ofhv j

, ū, ands consequently. We show therefor
that to leading order of the expansion in terms of system s
the gn,m’s do not depend on the scaleL. Doing so, we reach
such a level of describing the dynamics of the surface gro
by which one may also trace the dynamics of the singula
environments. That creates a logical way to construct
pathway toward examining the statistical properties of sin
larity functions gn,m . The importance of such an analys
became clear in Sec. V, in which the determination of
finite-size corrections to scaling inSn,m5^h‘ num& was
shown to be dependent on the lack of scale dependenc
the singularity functionsgn,m .

Let us turn to a study of the statistics for the environme
of the singularities in the KPZ equation. Definej(x,t)5
2hxx(x,t) and letW(hu ,ū,s,j1 ,j2 ,x,t) be the PDF of

hv~x,yj ,t !5 1
2 FhS yj1

x

2D1hS yj2
x

2D G ,
ū~x,yj ,t !5 1

2 FuS yj1
x

2D1uS yj2
x

2D G ,
s~x,yj ,t !5uS yj1

x

2D2uS yj2
x

2D ,

j6~x,yj ,t !52hx6x6
~yj6x6 ,t !,

conditional onyj being a singularity position. In this section
we will find the master equation governing the evolution
W(hv ,ū,s,j1 ,j2 ,x,t) in the limit of n→0. Starting from
the dynamical equation
2-17
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ht~z1x6!2
a

2
hx6

2 ~z1x6!5 f ~z1x6!, ~E1!

ut~z1x6!1auux6
~z1x6!52 f x6

~z1x6!, ~E2!

j t~z1x6!1au~z1x6!jx6
~z1x6!1a2j2~z1x6!

52 f x6x6
~z1x6!, ~E3!

we define

u~l1 ,l2 ,m1 ,m2 ,h1 ,h2 ,x1 ,x2 ,z,t !

5exp@2 il1h~z1x1!2 il2h~z1x2!2 im1u~z1x1!

2 im2u~z1x2!2 ih1j~z1x1!2 ih2j~z1x2!#

~E4!
-

02613
and

U5(
j

ud~z2yj !, ~E5!

then

rW~h1 ,h2 ,u1 ,u2 ,j1 ,j2x,t !

5E dl1dl2dm1dm2dh1dh2

~2p!6

3e2 il1h12 il2h22 im1u12 im2u22 ih1j12 ih2j2^U&.

~E6!

Using equations~E1!, ~E2!, ~E3! we now derive equations
for ^U& andW,
^U& t52 il1K S a

2
u1

2 1 f 1D(
j

ud~z2yj !L 2 il2K S a

2
u2

2 1 f 2D(
j

ud~z2yj !L
2 im1K ~2au1ux1

1 f x1
!(

j
ud~z2yj !L 2 im2K ~2au2ux2

1 f x2
!(

j
ud~z2yj !L

2 ih1K ~2aj1
2 2au1jx1

1 f x1x1
!(

j
ud~z2yj !L 2 ih2K ~2aj2

2 2au2jx21 f x2x2

!(
j

ud~z2yj !L
1K (

j
@2aū~yj ,t !#d1~z2yj !u1(

k
d~z2yj !d~ t2tk!uL 2K (

l
d~z2yl !d~ t2t l !uL . ~E7!

d1(z)5(d/dz)d(z), the (yk ,tk)’s are the points of singularity creations, and the (yl ,t l)’s are the points of singularity
annihilation due to collisions. Assuming homogeneity and using the identity@73#

ud1~z2yj !5@ud~z2yj !#z2ux1
d~z2yj !2ux2

d~z2yj !, ~E8!

it follows that

^U& t52 il1K S a

2
u1

2 1 f 1D(
j

ud~z2yj !L 2 il2K S a

2
u2

2 1 f 2D(
j

ud~z2yj !L 2 im1K ~2au1ux1
1 f x1

!(
j

ud~z2yj !L
2 im2K ~2au2ux2

1 f x2
!(

j
ud~z2yj !L 2 ih1K ~2aj1

2 2au1jx1
1 f x1x1

!(
j

ud~z2yj !L
2 ih2K ~2aj2

2 2au2jx2
1 f x2x2

!(
j

ū~yj ,t !~ux1
1ux2

!d~z2yj !L 1S12S2 , ~E9!
whereS1 and S2 account, respectively, for singularity cre
ation and collision events. These are given by

S1~l1 ,l2 ,m1 ,m2 ,h1 ,h2 ,x1 ,x2 ,z,t !

5K (
k

ud~z2yk!d~ t2tk!L , ~E10!
S2~l1 ,l2 ,m1 ,m2 ,h1 ,h2 ,x1 ,x2 ,z,t !

5K (
l

ud~z2yl !d~ t2t l !L . ~E11!

In regard to Novikov’s theorem, we have
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^ f 6u&5@2 il6k~0!2 il7k~x62x7!2 im7kx~x62x7!

1 ih6kxx~0!1 ih7~x62x7!#^u&, ~E12!

^ f x6
u&5@2 il6kx~x62x7!2 im6kxx~0!1 im7kx~x62x7!

1 ih7kxxx~x62x7!#^u&, ~E13!

^ f x6x6
u&5@2 il6kxx~x62x7!2 il7kxx~x62x7!

2 im7kxxx~x62x7!1 ih6kxxxx~0!

1 ih7kxxxx~x62x7!#^u&. ~E14!

To average the convective terms, we use
02613
iam6^u6j6U&1 iah6^u6j6U&52a^u6Ux6
&

1 ial6^u6
2 U&52a^u6U&x6

1a^j6U&

1 ial6^u6
2 U&52 ia^U&x6m6

1 ia^U&h6

2 ial6^U&m6m6
. ~E15!

Note that

ux6
5~ il6u62 im6jx6

2 ih6jx6
!u, ~E16!

^u6
2 U&52^U&m6m6

, ~E17!

^j6
2 U&52^U&h6h6

. ~E18!

Finally, for ^U& t we find
^U& t52
ia

2
l1^U&m1m1

2
ia

2
l2^U&m2m2

2
ia

2
~^U&x1m1

1^U&x2m2
2^U&x1m2

2^U&x2m1
!1

ia

2
~^U&h1

1^U&h2
!

2 iah1^U&h1h1
2 iah2^U&h2h2

2@l1
2 k~0!1l2

2 k~0!12l1l2k~x12x2!#^U&

2@m1
2 kxx~0!1m2

2 kxx~0!12m1m2kxx~x12x2!#^U&2@h1
2 kxxxx~0!1h2

2 kxxxx~0!12h1h2k~x12x2!#^U&

22~l1m22l2m1!kx~x12x2!^U&12~l1h11l2h2!kxx~0!^U&12~l1h21l2h1!kxx~x12x2!^U&

22~h2m12h1m2!kxxx~x12x2!^U&1K a(
j

ū~yj ,t !~ux1
1ux2

!d~z2yj !L 1S12S2 . ~E19!

For the term involvingū(yj ,t), we note that

u6~yj ,t !ux6
5@u~yj1x6 ,t !u#x6

2j~yj1x6 ,t !u5 iux6
l62 ium6

, ~E20!

u6~yj ,t !ux7
5@u~yj1x6 ,t !u#x7

5 iux7
l6 , ~E21!

thus

aK (
j

ū~yj ,t !~ux1
1ux2

!d~z2yj !L
5

ia

2
~^U&x1l1

1^U&x2l1
1^U&x1l2

1^U&x2l2
2^U&m1

2^U&m2
!. ~E22!

Combining the above expressions, on the subsetl15l25l/2, x152x25x/2, m15m11m2 , andm25(m12m2)/2,
^U& satisfies

^U& t52
ia

4
l~2^U&m1m1

1 1
2 ^U&m2m2

!2 ia^U&xm2
1

ia

2
~^U&h1

1^U&h2
!2 iah1^U&h1h1

2 iah2^U&h2h2

2
l2

2
@k~0!1k~x!#^U&2S m1

2

2
12m2

2D kxx~0!22S m1
2

4
2m2

2D kxx~x!^U&2@h1
2 kxxxx~0!1h2

2 kxxxx~0!12h1h2kxxxx~x!#

3^U&12lm2kx~x!^U&1l~h11h2!@kxx~0!1kxx~x!#^U&

12m2~h11h2!kxxx~x!^U&1m1~h22h1!kxxxx~x!^U&1S22S1 .

The S1 ,S2 are evaluated atl15l25l/2, x152x25x/2, m15m11m2 , and m25(m12m2)/2. Changing to the
variables (hv ,ū,s,j1 ,j2), we obtain the following equation forW:
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@rW~hv ,ū,s,j1 ,j2 ,x,t !# t5
a

2
ū2rWhv

1
a

8
s2rWhv

2asrWx1
a

2
j1rW1

a

2
j2rW1ar~j1

2 W!j1
1ar~j2

2 W!j2

1k~0!rWhvhv
1kxx~0!rWūū12r@kxx~0!2kxx~x!#Wss1rkxxxx~0!~Wj1j1

1Wj2j2
!

12rkxxxx~x!Wj2j2
22kx~x!rWshv

22kxx~0!rWhvj1
22kxx~0!rWhvj2

22kxx~x!rWhvj1

22kxx~x!rWhvj2
22rkxxx~x!~Wsj2

1Wsj1
!1kxxx~x!rWūj2

1kxxx~x!rWūj1
1z12z2 .

~E23!
i

-

in
The z1(hv j
,ū,s,j1 ,j2 ,x,t) is defined such that

z1~hv j
,ū,s,j1 ,j2 ,x,t !dhv j

ds dūdj1dj2dz dt
~E24!

gives the average number of singularity creation points
@z,z1dz)3@ t,t1dt) with

hv~x,y1 ,t1!P@hv ,hv1dhv!,

ū~x,y1 ,t1!P@ ū,ū1dū!,

s~x,y1 ,t1!P@s,s1ds!,

jS y11
x

2
,t1DP@j1 ,j11dj1!,

jS y12
x

2
,t1DP@j2 ,j21dj2!,

conditional on (y1 ,t1)P„@z,z1dz)3@ t,t1dt)… being a
point of singularity creation~because of the statistical homo
geneity,z is a dummy variable!. z2(hv j

,ū,s,j1 ,j2 ,x,t) is
defined such that
02613
n

z2~hv j
,ū,s,j1 ,j2 ,x,t !dhv j

ds dūdj1dj2dz dt
~E25!

gives the average number of singularity collision points
@z,z1dz)3@ t,t1dt) with

hv~x,y2 ,t2!P@hv ,hv1dhv!,

ū~x,y2 ,t2!P@ ū,ū1dū!,

s~x,y2 ,t2!P@s,s1ds!,

jS y21
x

2
,t2DP@j1 ,j11dj1!,

jS y22
x

2
,t2DP@j2 ,j21dj2!,

conditional on (y2 ,t2)P„@z,z1dz)3@ t,t1dt)… being a
point of singularity collision. Now we rescalehv as hv8
5hv /L1/2, so Eq.~E23! changes to
L21/2
a

2
ū2rWhv8

8 1L21/2
a

8
s2rWhv8

8 2asrWx81
a

2
j1rW81

a

2
j2rW81ar~j1

2 W8!j1
1ar~j2

2 W8!j2
1L21k~0!rWhv8hv8

8

1kxx~0!rWūū8 12r@kxx~0!2kxx~x!#Wss8 1rkxxxx~0!~Wj1j1
8 1Wj2j2

8 !12rkxxxx~x!Wj2j2
8 22L21/2kx~x!rWshv8

8

22kxx~0!L21/2rWhv8j1

8 22kxx~0!L21/2rWhv8j2

8 22kxx~x!L21/2rWhv8j1

8 22kxx~x!L21/2rWhv8j2

8

22rkxxx~x!~Wsj2
8 1Wsj1

8 !2kxxx~x!rWūj2
8 1kxxx~x!rWūj1

8 1z182z2850. ~E26!

In the limit of largeL or L→`, the leading terms are

2asrWx81
a

2
j1rW81

a

2
j2rW81ar~j1

2 W8!j1
1ar~j2

2 W8!j2
1kxx~0!rWūū8 12r@kxx~0!2kxx~x!#Wss8 1rkxxxx~0!

3~Wj1j1
8 1Wj2j2

8 !12rkxxxx~x!Wj2j2
8 22rkxxx~x!~Wsj2

8 1Wsj1
8 !2kxxx~x!rWūj2

8 1kxxx~x!rWūj1
8 1z182z2850.

~E27!
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To find the gn,m we multiply the above equation b
h8nūmsp, and integrating overh8, ū, s, j1 , and j2 , we
have

2ar^hv8
nūmsp11&x1

ar

2
^hv8

nūmspj1&1
ar

2
^hv8

nūmspj2&

12p~p21!r@kxx~0!2kxx~x!#^hv8
nūmsp22&1m~m

21!kxx~0!r^hv8
nūm22sp&1Qnmp

~1! 2Qnmp
~2! 50, ~E28!

where

Qnmp
~1! 5E h8nūmspz18dh8dū ds dj1dj2 ,

Qnmp
~2! 5E h8nūmspz28dh8dū ds dj1dj2.

Using the identities

]

]x
hv8~x,yj ,t !52

s

4L1/2, ~E29!

]

]x
s~x,yj ,t !5 1

2 ~j11j2!, ~E30!

]

]x
ū~x,yj ,t !5

s

2
, ~E31!

we find

ar

2
^hv8

nūmsp~j11j2!&

5
ar

p11 H ^hv8
nūmsp11&x1

n

4L1/2^hv8
~n21!Sūmsp12&

1
m

2
^hv

,nūm21sp12&J . ~E32!

So in the limit ofL→`, we have
-

e

02613
2
par

p11
^hv8

nūmsp11&x1
mar

2~p11!
^hv8

nūm21sp12&

12p~p21!r@kxx~0!2kxx~x!#^hv8
nūmsp22&

1m~m21!kxx~0!r^hv8
nūm22sp&1Qnmp

~1! 2Qnmp
~2! 50.

~E33!

Assuming a stationary solution for the dynamical equ
tion ~E23! governed overW and rescalinghv as hv8
5hv /L1/2 in the resulting differential equation, we reach E
~E26!. Of course the mentioned equationis dependent on
scaleL, but being interested in the limit ofL→` results in
Eq. ~E27!, which is free of the explicit scale-dependent term
in the leading order. However, we are faced with two ve
complicated terms, namelyz1 andz2 , which should be ana-
lyzed. The origin of these terms is related to processes
sharp valley creation and annihilation. We argue that th
processes basically involve local interaction between nea
sharp valleys and the effects of forcing, which spatial cor
lation is assumed to be much less than system size, so
essentially would not carry any information about syste
size. In this sense, Eq.~E27! encodes the fact that the prob
ability distribution W is a scale-invariant function of its ar
gumenthv85hv /L1/2 in the leading order. The above proper
is deciphered in Eq.~E33! too, but this time it is translated in
terms of the scale independence ofgn,m’s.

Also, the equation forW enables us to find the time evo
lution of the sharp valley characteristics. For example, m
tiplying Eq. ~E23! by hv and integrating over all variables
we can derive the increasing rate of mean height of the
gularities, and noting that

]

]x
hv~x,yj ,t !52

s

4
, ~E34!

]

]x
s~x,yj ,t !5 1

2 ~j11j2!, ~E35!

we get

d

dt
^hv&~ t !52

a

8
^4ū22s2&. ~E36!
v.
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