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Three-dimensional forced Burgers turbulence supplemented with a continuity equation
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We investigate turbulent limit of the forced Burgers equation supplemented with a continuity equation in
three dimensions. The scaling exponent of the conditional two-point correlation function of density, i.e.,
^r(x1)r(x2)uDu&;ux12x2u2a3, is calculated self-consistently in the nonuniversal region from which we ob-
tain a353. Also we derive an equation governing the evolution of the probability density function~PDF! of
longitudinal velocity increments in length scale, from which a possible mechanism for the dependence of the
inertial PDF to one-pointurms is developed.
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I. INTRODUCTION

Burgers equation describes a variety of nonlinear w
phenomena arising in the theory of wave propagation, aco
tics, plasma physics, surface growth, charge density wa
dynamics of the vortex lines in high-Tc superconductors, dis
locations in the disordered solids, and formation of larg
scale structures in the universe@1–9#. The problem of forced
and unforced Burgers turbulence has been attacked rec
by various methods@1–27#. It is well known that both de-
caying and forced Burgers equation develop singular st
tures. In one dimension, nonlinearity in the advection te
develops the so-called shock structures. Heuristic argum
@3,6,11,19,23# show that shock structures are responsible
the extreme intermittency. So in the structure functions
fined as

Sn~r ![^@u~x1r !2u~x!#n&;r jn, ~1!

the exponents arejn51. At the same time, energy casca
has a simple picture in terms of shock structures in the
tionary Burgers turbulence. Forcing at large scales the
jected energy is advected from large scales down to
scales of typical shock width where the energy is dissipa
In multidimensional Burgers turbulence the presence of la
scale structures forming ad-dimensional frothlike pattern is
believed to be responsible for extreme case of intermitten
causing the saturation of the intermittency exponent tojn
51. Similarity of intermittency in stationary multidimen
sional Burgers problem to one dimension is motivated by
replica calculations@11# in infinite dimensions and simula
tions@19#. Recently the nature of singularities in multidime
sional decaying Burgers turbulence with density has b
elaborated@22#. However, in one dimension there are an
finity of conserved currents in the inviscid and unforc
equation, while the multidimensional Burgers proble
ceases to have such conservation laws. According to re
theoretical@11–28# and numerical work@10,16#, it is known
1063-651X/2001/63~5!/056308~13!/$20.00 63 0563
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that the probability density function~PDF! for the velocity
difference behaves differently in universal and nonuniver
regions. In the universal region, i.e., the intervaluDuu
!urms andr !L, the PDF can be represented by the univ
sal scaling form

P~Du,r !5
1

r z
FS Du

r z D , ~2!

whereF(x) is a normalizable function and the exponentz is
related to the exponent of random-force correlationh as z
5(h11)/3. For x5uDuu/r z@1 the universal scaling func
tion F(x) is given by the expressionF(x);exp(2ax3),
wherea is some constant in one-dimension and it depe
on the cosine of angle between the vectorsDu and r in the
higher dimensions. On the other hand, the PDF in the in
val uDuu@urms behaves as

P~Du,r !5rGS Du

urms
D , ~3!

where the argument depends on the single-point nonuni
sal urms . Analytic supports for any one of the observatio
starting from the dynamical equations is the major challen
of theoretical understanding of intermittent statistics of B
gers equation.

We will study the three-dimensional Burgers equati
supplemented with a continuity equation in the inviscid lim
Contrasting the fact that there are infinity of conserved c
rents in one dimension to the lack of such conserved curr
in multidimensional Burgers problem we aim to extract so
information about the intermittency and probability dens
of longitudinal velocity increments. Providing a mean-fiel
like approximation for the conditional two-point correlatio
of density, i.e., assuminĝr(x1)r(x2)uDu&;ux12x2u2a3,
the right tail of probability density of longitudina
velocity increment is shown to behave asP(Du,r )
;(1/r )exp@2(Du/r)3# in the universal region. Positivity o
the PDF indicates that the exponent of two-point correlat
of density for the inviscid case fixes toa357/2 in the uni-
©2001 The American Physical Society08-1
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JAHANSHAH DAVOUDI et al. PHYSICAL REVIEW E 63 056308
versal regime. Unlike the Burgers problem@11–23# we cor-
roborate that when continuity equation is coupled it is p
sible to find a positive PDF even in thestrict inviscidcase,
i.e.,n50. However, due to lack of control on the dissipati
anomaly we cannot provide any information regardinginvis-
cid limit. Relying on the same mean field analysis we der
an equation governing the evolution of stationary probabi
density of longitudinal velocity increments in the nonunive
sal region. The results indicate that the information of o
point urms is transferred from integral scales down
inertial-scale PDF. This is also observed numerically in o
dimensional Burgers problem@11,19#. Within our approxi-
mations the intermittency exponents are derived to satu
to a constant and from there we obtaina353.

The paper is organized as follows: In Sec. II we define
generating function and comment on its relevance to con
vation laws. In Sec. III we derive the right tail of the pro
ability density of longitudinal velocity increments in the un
versal region and obtain the exponent of density-den
correlator in inviscid case. In Secs. III and IV we obta
stationary relations for some of the structure functions
which the viscose terms are not relevant and determine
small-scale statistics of longitudinal velocity difference
finding an evolution equation for the PDF of longitudin
velocity difference in the nonuniversal regime. The pictu
for nonskewed part of the PDF is consistent and we confi
that intermittency exponents saturate to a constant.

II. GENERATING FUNCTION EQUATION IN THREE
DIMENSIONS

Our starting point is the 3D Burgers equation supp
mented with a continuity equation

ut1~u•“ !u5n“2u1f~x,t !, ~4!

r t1]a~rua!50, ~5!

for the Eulerian velocityu(x,t) and viscosityn and density
r, in three-dimensions. The forcef(x,t) is the external stir-
ring force that injects energy into the system on a typi
length scaleL. More specifically, we take a Gaussian distri
uted random force that is identified as

^ f m~x,t ! f n~x8,t8!&5k~0!d~ t2t8!kmn~x2x8!, ~6!

wherem,n5x,y,z. The correlation functionkmn(r ) is nor-
malized to unity at the origin and decays rapidly enou
wherer becomes larger or equal to integral scaleL, i.e., we
suppose that

kmn~xi2xj !5k~0!F12
uxi2xj u2

2L2
dm,n1

~xi2xj !m~xi2xj !n

L2 G ,

~7!

with k(0),L51. The quantityk(0) measures the energy in
jected into the turbulent fluid per unit time and unit volum
f(x,t) provides also the energy flux in thekth shell asPk

5P(r 5k21).*1/L
k ^uf(k)u2&, wherer belongs to the inertia

range. Equations~4! and ~5! exhibit special type of nonlin-
05630
-

e
y

-

-

te

e
r-

ty

n
he

-

l

h

.

ear interactions, hidden in the nonlinear term (u•“)u. The
advective term couples any given scale of motion to the la
scales where large scales contain most of the energy of
flows. This means that large-scale fluctuations of turbule
production in the energy-containing range couple to
small-scale dynamics of turbulence flow. In other words,
details of the large-scale turbulence production mechan
are important, leading to the nonuniversality of probabil
distribution function of velocity difference. However, in th
case of one-dimensional forced Burgers equation w
uu(x)2u(x8)u!urms it is believed that the PDF for the ve
locity difference is not dependent onurms and therefore one-
point urms does not appear in the velocity difference PD
This region is known as the Galilean invariant~GI! region.
The problem is to understand the statistical properties of
locity and density fields that are the solutions of Eqs.~4! and
~5!. Before starting the statistical analysis of these coup
equations we wish to remind some basic differences betw
Burgers equation and Burgers and density equations
higher dimensions. It is well known that Burgers equation
one dimension has infinity of conserved currents in invis
and unforced case, i.e., for purely convective dynamics
have

]un

]t
1

n

n11

]un11

]x
;0. ~8!

In higher dimensions such conserved currents do not e
However, purely convected dynamics in the coupled den
and Burgers equations have infinite conserved currents
in one dimension or higher dimensions. Following@12# we
demonstrate these infinity of conserved equations in term
el(x)5r(x)elkuk(x) as

]

]t
el~x!1

]

]xk
@ukel~x!#;0. ~9!

Expanding the above relation in powers ofl shows that
generally all the tensorsTa1•••an

5rua1
•••uan

are con-
served in purely convective case. For example, compon
of momentum and energy satisfy some conservation law
following:

] t~rui !1] j~ruiuj !50, ~10!

] t~ru•u!1] j~ru•uuj !50. ~11!

Qualitatively these conservation laws indicate that in the
viscid case the fluctuations of density and velocity should
interrelated. In the driven case fundamental quantities
emerge through calculations are mixed correlations of ve
ity and density and the statistics of density and velocity alo
would be extracted from those mixed correlations. For stu
ing the driven Burgers equation in three dimensions c
strained with continuity, we consider the following two-poi
generating function:

Z2~l1 ,l2 ,x1 ,x2!5^r~x1!r~x2!exp@l1•u~x1!

1l2•u~x2!#&. ~12!
8-2
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Basically we have written the objectel(x) in two different
points and the symbol̂•••& means an average over vario
realizations of the random force. To derive an equation
Z2, we write Eqs. ~4! and ~5! in two points x1 and x2
for different components of velocity vectoru1 , u2 ,
u3, and r(x) and multiply the equations inr(x2),
l1xr(x1)r(x2), . . . , l1zr(x1)r(x2) and r(x1),
l2xr(x1)r(x2), . . . , andl2zr(x1)r(x2), respectively. After
adding the equations and multiplying the result by exp@l1
•u(x1)1l2•u(x2)# we average with respect to external ra
dom force, so

] tZ21 (
$ i 51,2%m5x,y,z

]

]l i ,m
]m i

Z22 (
$ i , j 51,2%m,n5x,y,z

3l i ,ml j ,nkmn~xi2xj !Z25D2 , ~13!

whereD2 is given by

D25^nr~x1!r~x2!@l1•¹2u~x1!

1l2•¹2u~x2!#exp@l1•u~x1!1l2•u~x2!#&. ~14!

Second and third terms in the left-hand side are resp
tively related to convective terms and random forcing. It
one of the advantages of this method that all the nonline
ties due to convection can be written in a closed form. T
Gaussianity of the forcing statistics also helps to write
contribution in terms of generating function according to
typical trick in Gaussian random variables@1#. On dropping
the dissipation terms, the generating function defined ab
satisfies a closed equation for Gaussian random forc
However, it is already emphasized@12,19# that the role of
dissipation term in the turbulent limit can be understood
looking at the statistics of̂un& in Burgers equation. In one
dimension convective terms cannot offset the pumped rat
^un& since^]un/]x&50. Therefore the stationary state ma
be maintained by nonzero limit of dissipation terms. Fin
contribution of the dissipation terms in the driven turbule
limit resembles the notion ofanomaly. In the problem of
Burgers and continuity the convective terms can be writ
as conserved currents even in higher dimensions. He
anomalous behavior of the dissipation terms in the mult
mensional Burgers and continuity equation are importan
maintaining a statistical stationary state. Recently@21,23# it
has been shown that regularizing the convective terms
precise way is equivalent to imposing anomalous contri
tion of dissipation terms in the turbulent limit not only fo
the forced Burgers equation but even for decaying cas
one dimension. Hence one can in principle determine
anomaly by appropriate regularization of the derivatives
order to take care of the singularities. However, we belie
that proposing the regularization scheme when one is w
ing with momentum equation is not a trivial task. Th
scheme introduced in@23# is not applicable to this case sinc
it relies upon a special separation of velocity equation a
density continuity. In other words, naive coupling of Burge
and continuity equations is not equivalent to momentum
continuity equations unless one assumes the smoothne
the fields. As soon as the singularities are developed,
05630
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equivalence is no more valid. In this sense up to the ti
scale of singularity formation Eq.~10! and Eq.~11! are valid
and after that one needs to regularize the convection term
them in a way that produces the anomaly terms establis
by the presence of the singularities.

Hereafter we change the variables as:x65x16x2, l1

5l11l2 andl25(l12l2/2) and write Eq.~8! in terms of
l1 andl2 so we will have

(
m51

d S ]

]l1m

]

]x1m
1

]

]l2m

]

]x2m
DZ2

2 (
m,n51

d

l1ml1nk~0!Z2

1 (
m,n51

d S 1

2
l1ml1n22l2ml2nD

3k~0!S r 2

2L2
dmn1

x2mx2n

L2 D Z25D2 , ~15!

WhereD2 term is the dissipation contribution and is wri
ten as

D25 K nr~x1!r~x2!Fl1m

2
$~¹2

2 1¹1
2 !u1m

12~¹2•¹1!u2m%1l2m$~¹2
2 1¹1

2 !u2m

12~¹2•¹1!u1m%Gel1mu1m1l2mu2mL . ~16!

Because of statistical homogeneity all the terms prop
tional to]Z2 /]x1m are vanished. The above equation can
expanded in powers ofl2m and l1m so in each order of
expansion one would obviously get an equation that is g
erned over different mixed moments ofr, u2m , andu1m . In
general, the generating function satisfying the above dyna
cal equation is a compact way of writing the dynamic
equations of all the structure functions. Its solution would
a function ofl2m andl1m ; however, it is easy to check tha
the dependence ofZ2 on l2m and l1m can be separated
self-consistently so that

Z2~x2 ,l2 ,l1!5d~l1!F2~x2 ,l2!. ~17!

It is remarked@12# that in the inviscid limit, the proposed
ansatz is the only consistent form forZ2 in which its depen-
dence onl1 and l2 can be separated. However, one m
see that in the inviscid problem whenn50 it is possible to
find more general forms of separation in which the dep
dence onl1 is not a delta function. In the case of Burge
equation in one dimension the proposed separation is v
only whenu!urms andr !L. As far as convective terms ar
concerned in the present problem the validity of this ans
is not necessarily restricted tou!urms . Actually the con-
servation of density cancels the terms of the ty
(1/l i ,m)(]Z2 /]xi ,m) in the convective contributions@12,17–
19# that complicates the problem by mixingl2m andl1m in
the equation ofZ2(x2 ,l2 ,l1). However, we emphasize
8-3
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that it might happen that effective closure for dissipati
generates such complicated operators that limit the vali
of the ansatz. Hence puttingl150 and considering the
spherical coordinates, i.e.,x2 :(r ,u,w) and l2 :(m,u8,w8).
It becomes clear that on insertingl150 in Eq. ~15! the
remaining will involve velocity increments. We find that
F2(x2 ,l2) satisfies the following equation for homog
neous and isotropic case:

Fs] r]m2
s~12s2!

rm
]s

21
11s2

rm
]s1

12s2

m
] r]s1

12s2

r
]m]s

2r 2m2~112s2!GF25D2 , ~18!

wheres5cosg5cosu cosu81sinu sinu8 cos(w2w8).
In this case the dissipation term is the limit ofn→0 and

then r→0 of the following:

D25^nr~x1!r~x2!l2m~¹1
2u1m2¹2

2u2m!el2mu2m&.
~19!

The same kind of master equation was first derived
Polyakov@12# in the problem of forced Burgers equation
d51 and then generalized by Boldyrev@17#. This equation
is not closed due to the dissipation term and many propo
have been suggested for treatingD2 in the case of one-
dimensional Burgers equation that have given rise to dif
ent results@11–22#.

Adaptingn50 in one-dimensional Burgers equation co
verts the original problem to Riemann equation@20,21#.
Structure of nonlinearity in Riemann equation leads to m
tivalued solutions so the complete statistical analysis of
problem would be very complicated. However, in one
mension it is shown that the closed master equation of R
mann equation gives some upper bounds for the tails of
velocity increment PDF in the corresponding Burgers pr
lem. Here although we do not discard the viscosity term
we will justify that it would be fruitful to study the inviscid
case,n50, since some of the details of longitudinal PD
are not sensitive to dissipation contributions. Hence we
to extract as much information about the problem as poss
without considering the difficulties related to anomalous c
tributions of dissipation terms. The limitations of validity o
the results will be discussed later.

Even forgetting the dissipation the generating funct
equation involves some correlations between velocity inc
ments and density. Vaguely speaking, since the density
is advected by velocity field, one expects that there would
strong correlation between density and velocity increme
So extracting information about density and velocity fie
alone from such mixed correlations is a nontrivial task. P
ceeding further we propose the following ansatz
F2(m,r ,s)

F2~m,r ,s!5r 2a3F~m,r ,s!. ~20!

In order to clarify the meaning ofF(m,r ,s) we write
F2(m,r ,s) explicitly as follows:
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F2~m,r ,s!5E ^r~x1!r~x2!uDu&

3exp~l2•Du!P~Du,r !dDu. ~21!

Assuming scaling invariance for density fluctuations, t
conditional density-density correlation appearing in the in
grand would be a scaling function ofr. In addition, since
density-density correlation is conditioned on a fixed value
velocity increment, it should be a nontrivial function of ve
locity increment fluctuations too. Having the idea of mea
field analysis we assume that conditional average is funct
ally dependent on fluctuations of velocity increments ju
through different values of scaling exponent in universal a
nonuniversal regimes, i.e.,

^r~x1!r~x2!uDu&;r 2a3. ~22!

Although an approximation, this assumption simplifies t
form of generating function so one can identify the functi
F(m,r ,s) in Eq. ~20! as the generating function of velocit
increments so that

F~m,r ,s!5E exp~l2•Du!P~Du,r !dDu. ~23!

Therefore we expect that the mean field kind of reason
would fix the value of the parametera3 self-consistently. We
would notice that even fixinga3 within this approximation
becomes very promising due to dissipation anomaly.

III. UNIVERSAL PROBABILITY DENSITY FUNCTION

We propose that in homogeneous and isotropic probl
with stirring correlation ask(r );12r h, where in the presen
caseh52, there exists a universal scale-invariant solution
Eq. ~18! in the following form:

F2~m,r ,s!5g~r !F~mr d,s!, g~r !5r 2a3 ~24!

This ansatz first introduced by Boldyrev@18# in the problem
of turbulence with pressure in one dimension. Substitut
the following form for the generating function fixes the e
ponentd as d5(h11)/3, so from Eq.~7! we find d51.
Invoking to the scaling invariance of the inviscid Burge
equation and continuity equation, we assume the existenc
conditional density-density correlation with the scaling for
introduced in Eq.~21!. The scaling exponent of two-poin
correlation of density, i.e.,a3, can be found by taking the
limit of generating function whenm→0. Therefore it is nec-
essary to find such a solution forF(mr d,s) that tends to a
constant in the limit ofm→0. Now the proposed scale in
variant argument asF(mr ,s) can be interpreted as if we ar
seeking those solutions for velocity-increment PDFs that
have asP(Du/r ,s). Based on this mean-field-like calculatio
the parametera3 enters in the dynamical equations
velocity-increment generating function. The goal would
to fix this parameter according to the general consiste
conditions like positivity or normalizability of velocity-
increment PDF. Proceeding further we focus our attention
8-4
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the longitudinal velocity components, i.e.,s51. Hence we
assume the scaling ansatzF(mr ,s)5F(mrs) after which we
put s51. The proposed form of the arguments will dicta
that Sn(r ,s);snSn(r ) for s→1 when n,1. However, in
Appendix A we rationalize the solution in more detail. R
writing Eq. ~18! in terms of the variablez5mrs, the follow-
ing equation is obtained in the case ofs51:

z]z
2F~z!1~32a3!]zF~z!23z2F~z!5D2 . ~25!

This is the projection of the three-dimensional master eq
tion on separation line between the two observation poi
Neglecting D2 term it is interesting that the above equation
formally similar to the master equation first derived
Polyakov @12# for the problem of one-dimensional Burge
equation in theinviscid limit. Treating more carefully the
origin of different terms in the master equation would rev
the fact that although we are essentially looking at the p
jection of fluctuations on one line but at the same time
fluctuations of transverse components contribute to the e
tion. The exponent of density correlation appears in the
sulting equation that is necessary in order to find a posi
and finite PDF. One can readily deduce some informat
about the tails of PDF by Laplace transforming of Eq.~25!,
that is

3
]2P

]y2
2y2

]P

]y
1~12a3!yP5D2 , ~26!

where y5Du/r . Right tail of the PDF, i.e., whenDu/r
→1` ~for s51), in three dimensions, is insensitive to di
sipation terms. So we neglect the dissipation terms in
right hand of the PDF equation and it is immediate
observed that the asymptotic of PDF behaves
(1/r )exp@2(Du/r)3#. This form has been confirmed by se
eral other approaches@10–21#. It is believed that the sam
functional behavior of right tail is valid also when visco
effects are present. The reason is based on our intuition a
Burgers equation in one dimension. Actually right tail is ju
built in by the contribution of ramps with positive gradien
much larger than the typical gradient imposed by the forc
hence shock structures do not contribute to this part of
PDF. Since almost all the dissipation is occurred by sh
structures in one dimension, neglecting the dissipation t
somehow is equivalent to neglecting the effects of sho
that are corresponding to the large negative gradients
therefore the right tail of PDF would not be affected. A
though the one-dimensional simple shock structures
changed in higher dimensions to more complicated obje
@5,22#, however, we think that the same ideas would be
plicable in higher dimensions. The left tail of PDF strong
depends on the structure ofD2 terms. Therefore one would
resolve the anomalous contribution of dissipation terms
the PDF equation. In Polyakov’s work the effect of visco
term is found in the limit ofn→0 andr !L by appealing to
the self-consistent conjecture of operator product expans
It is found that consistent with the symmetries of the pro
lem, two terms would be generated by the viscous te
These two anomaly terms modify the master equation g
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erning the generating function in such a way that a positi
finite, renormalizable PDF is found@12,16,17#. A simple
comparison between Eq.~25! and Polyakov’s result will re-
veal that the structure ofb anomalyis similar to the term
proportional to the scaling exponent of density-density c
relation. In the problem of one-dimensional Burgers equat
and in the zero-viscosity limit the presence of theb anomaly
generated by viscosity term ensures the existence of a p
tive PDF for velocity increments in the universal regime a
the requirement of positivity will fix the value of anomal
coefficient @12#. Boldyrev @17# shows that one can find
family of solutions for different values of theb anomaly
coefficient if one relaxes the homogeneity condition for t
universal part of the PDF. The value of this coefficient
related to the algebraic decay of the left tail of PDF in t
universal regime. Determination of the decay exponent
been a controversial subject for which other methods h
been developed. Among them recent rigorous meth
should be mentioned within which the exponent of the al
braic decay is fixed to 7/2@20,21#. Since we are not able to
give a closure for dissipation terms we cannot argue ab
the left tail in the inviscid limit. However, the interestin
point is that our calculations in three dimensions show t
when density fluctuations are taken into account, even in
inviscid problem whenn50, it is possible to find a positive
solution for the longitudinal velocity increment PDF. It
easy to show that the requirement of the positivity on
PDF will fix the density-density scaling exponent toa3
57/2. Left tail of the PDF in this case is sensitive to th
scaling exponent of the density-density correlator and
given by 1/(Du)(a321) whenDu/r→2`. As we mentioned,
in one-dimensional Burgers equation neglecting the diss
tion term does not result in finding positive solutions f
PDF while density fluctuations play such a role that even
inviscid case, i.e.,n50, one can in principle find a positive
solution. Because density is advected passively by veloc
this result may seem strange and one expects though tha
statistics of density would not affect the statistics of veloci
The resolving point is already mentioned that conservat
laws connect density and velocity dynamically so that th
should be a back reaction of density on velocity too. In o
analysis the self-consistent determination of adjusta
mean-field parametera3 reflects this interrelation. We think
that the exponent for left tail is valid until the typical tim
scale of the singularity development. After singularity fo
mation the anomaly terms would be considered that wo
surely change the exponent. Still we think that the mix
interrelation between density and velocity after singular
formation makes the result different from what one wou
get for Burgers equation that is coupled naively to dens
continuity. However, we are not able to resolve the dissi
tion effects to include the anomaly in the calculations ye

IV. STRUCTURE FUNCTIONS IN NONUNIVERSAL
REGION

In this section we consider the three-dimensional Burg
turbulence supplemented with a continuity equation in
nonuniversal region, i.e.,uu(x)2u(x8)u@urms . The force-
8-5
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free Burgers equation is invariant under space-time tran
tion, parity, and scaling transformation. Also, it is invaria
under Galilean transformation,x→x1Vt and v→v1V,
whereV is the constant velocity of the moving frame. Bo
boundary conditions and forcing can violate some or all
the symmetries of force-free Burgers equation. However,
usually assumed that in the high-Reynolds-number flows
symmetries of the dynamical equation are restored in
limit r→0 andr @h. So in this limit the root mean square o
velocity fluctuationsurms5A^v2& which is not invariant un-
der a constant shiftV, cannot enter the relations describin
the moments of velocity difference. Therefore the effect
equations for velocity correlation functions in the inert
range must have the symmetries of the original Burg
equations. Recent understandings of Burgers turbulence@10–
21# indicate that in the non-universal region the PDF of v
locity difference depends on the one-pointurms and therefore
is not universal that is meant to be sensitive on the detail
large-scale forcing. This phenomenon is called breakdow
Galilean invariance in the nonuniversal region.

Possible generalization of these ideas for Navier-Sto
turbulence are developed by Yakhot recently@19#. In the
following we aim to give a possible analytic mechanis
within which one-pointurms enters in argument of the PD
in nonuniversal region.

We shall be interested in the moments of velocity inc
ments. As we emphasized in the previous section, becau
the structure of convective terms we putl11l250 without
any restriction in the phase space. Although correct, we c
not discard other solutions in which other complex dep
dencies onl2m andl1m exist but at least the results derive
under this assumption are consistent.

Specifically, we first aim to find the behavior oflongitu-
dinal components of some of the structure functions, so
lowing @19# it is more convenient to change the variables

h25(l2•r )/r andh35Al22h2
2. Decomposing velocity in-

crement asuuu5u and u'5v, then h2 and h3, would be
respectively the sources of longitudinal and transverse c
ponents of velocity increments. In terms of these variab
we obtain the following differential equation fo
F2(h2 ,h3 ,r ):

F ]2

]r ]h2
1

d21

r

]

]r
1

h2

h1
S 22d

h3
D ]

]h3
1

h3

r

]2

]h2]h3

2
h2

r

]2

]h3
2GF22r 2~3h2

21h3
2!F25D2 . ~27!

Invoking the proposed mean-field interpretation we adapt
ansatzF2(h2 ,h3 ,r )5r 2adF(h2 ,h3 ,r ) from which one ob-
tains the equation of velocity-increment generating functi
All the information regarding the moments of velocity incr
ments can be determined just by suitable differentiation
F(h2 ,h3 ,r ) with respect to h2 and h3, i.e., ^unvm&
5]h2

n ]h3

m Fuh25h350. Unlike the universal part we do not re

strict the solutions ofF to the ones with scale invariant a
guments. Laplace transforming Eq.~27! one easily deter-
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mines the equation satisfied by the joint probability dens
of longitudinal and transverse components of velocity inc
mentsP(u,v,r ), that is

x

r

]

]v
@uP~u,v !#2

]

]r

]

]v
@uP~u,v !#1

d22

r

]

]u
@vP~u,v !#

1
1

r

]2

]v2
@uvP~u,v !#2

1

r

]

]u

]

]v
@v2P~u,v !#

5
k~0!

L2 F23r 2
]

]v
]2

]u2
P~u,v !1r 2

]3

]v3
P~u,v !G1D2 .

~28!

The parameterx is defined asx5ad2d11 andD2 black
box is resembling all the nonzero contributions buried
dissipation term. Since dissipation contributions cannot
written in terms of generating function itself, the equatio
are not closed. However, we extract some valuable inform
tion about some specific moments of velocity increments
which the dissipation terms are not relevant.

Starting with the PDF equation, the structure functio
Sn,m5^unvm& generally satisfy the following equation:

mS ]

]r
1

m212x

r DSn11,m212
n~d221m!

r
Sn21,m11

53
k~0!

L2
mn~n21!r 2Sn22,m21

2
k~0!

L2
m~m21!~m22!r 2Sn,m231D2 . ~29!

The equation of third moment of longitudinal velocity in
crementS3,0(r ) is readily found since assuming the statio
arity one can estimate the contribution of dissipation. Ac
ally it is simpler to think of generating function equation fo
evaluating the contribution of dissipation. To obtain t
equation for S3,0 one needs the terms of the order
O(h2

2h3). Fortunately dissipation contribution at this order
proportional to average energy-dissipation rate, i.e.,e(x)
5^(]ui /]xj )

2& when n→0. However, in the statistical sta
tionary state the average dissipation rate would be equa
rate of energy pumping injected by forcing term. Due to t
Gaussianity of the forcing statistics the rate of energy pum
ing is ^ f m(x)um(x)&;k(0). So theequation ofS3,0 becomes

S d

dr
2

x

r DS3,022
~d21!

r
S1,2524k~0!16

k~0!

L2
r 2.

~30!

Since the above equation is coupled to theS1,2 one should
determine it beforehand. Again the equation forS1,2 can be
read fromSn,m equation, so we have

3S d

dr
2

x

r DS1,216
1

r
S1,2524k~0!16

k~0!

L2
r 2, ~31!
8-6
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where the viscous term again is of the same order a
previous case. Substituting the solution forS1,2 back in Eq.
~30!, we can solve the equation ofS3,0(r ). In the inertial
ranges the order ofO(r 2) forcing term is negligible in com-
parison withO(1) dissipation terms. Since we will be inte
ested in the integral-scale effects for structure function s
ings we do not discard the forcing contributions. The gene
solution ofS3,0 is

S3,0~r !5F2~d21!

3~32x!
11G4k~0!

12x
r 1

2~d12!k~0!

L2~32x!
r 31Crx.

~32!

The unknown coefficientC is determined by theboundary
condition imposed by the statistics in integral scales. A
though we have no precise way for determination of integ
scaleL it is pragmatically defined@11,19,28# by appealing to
the idea that in the integral scales the longitudinal PDF
nearly Gaussian so approximately all the odd-order mom
would vanish in that scale, i.e.,S2n11,0(r 5L)50. The coef-
ficient of homogeneous solution consequently is found to
;k(0)L12x apart from some numerical coefficients. Requ
ing that the coefficient of third-order structure function b
comesL independent the exponentx is immediately fixed to
x51. In the next section we will clear out the role of p
rameterx in our study. Thanks to the invariance of the ba
dynamical equations under simultaneous operationsx→2x
andu→2u, the underlying PDF equations would be inva
ant under the same operations too. Due to the rotationa
variance it is interesting to note that combinations li
^v2n¹2v& do not contribute to expansion of dissipation term
in powers of h2 and h3. However still the combinations
^u2n¹2u& may contribute. It is straightforward to see th
equations for all the even-order moments of longitudinal
locity increments will involve such combinations in the
corresponding dissipation terms. Recently it is shown exp
mentally that such contributions are zero@29# in the Navier-
Stokes turbulence. We think that such terms would be sm
compared to the other terms in the equation because
involve the odd part of the PDF that is orders of magnitu
smaller than the even part, so in principle one can appr
mately neglect such terms at least in the equation of
even-order moments of the longitudinal structure functio
Therefore we study strict inviscid equations for investigat
the behavior ofS2n,0 , that is

S 2x

r
1

d

dr DS2n,02
~2n21!~d21!

r
S2n22,2

53r 2
k~0!

L2
~2n21!~2n22!S2n23,0. ~33!

V. PROJECTION OF THE DYNAMICS ON A LINE
AND LONGITUDINAL PDF

Back to variables introduced in Eq.~18! we aim to find
the structure functions of velocity increment that are defin
as
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Sn~r ,s!5E unP~u,r ,s!du,

whereu is now the modulus of velocity increment vector an
s is the angle between velocity increment andr. Switching to
these variables it is straightforward to show that in the n
universal region the PDF for the velocity difference in thr
dimensions satisfies the following equation:

ads

r
]uuP2s]uu] r P2

s~12s2!

r
]s

2P1
d221s2

r
]sP

2
ad

r
~12s2!]sP1~12s2!]s] r P2

~12s2!

r
]uu]sP

1r 2~112s2!]u
3P5D2 , ~34!

wheres5cosg5cosu cosu81sinu sinu8 cos(w2w8) in three
dimensions and againD2 term is dissipation contributions
Assuming all of the moments of velocity difference exist, t
structure functionsSn for given angleg @or s5cos(g)] sat-
isfies the following equation:

@sn1~12s2!]s#r ] rSn2nsadSn2s~12s2!]s
2Sn

1~d221s2!]sSn2ad~12s2!]sSn1n~12s2!]sSn

1r 3n~n21!~n22!~112s2!Sn235D2 . ~35!

In order to study longitudinal PDF we must consider t
above equation in the limit ofs→1. This limit is not trivial
and needs to be considered more carefully. The contribut
of different terms of the PDF equation in the limit whens
→1 is determined by the corresponding terms in the eq
tion of the structure functions. Again due to dissipation t
equation is not at all trivial to be analyzed, however, as
argued before one can safely drop theD2 term in even-order
moments of longitudinal components. Hence theS2n(r ,s)
satisfies a closed equation. The forcing contribution to
above equation is the last term, i.e.,r 3n(n21)(n22)(1
12s2)Sn23 and this term does not have any contribution
the exponent of structure function. However, the amplitu
of the structure functions does depend on the details of fo
ing. It means that the exponents of multiscaling in the str
ture functions are not changed by the forcing term and t
are determined by the structure of nonlinearity and the tra
verse contributions to the Burgers equation. For solving
~35! we examine the solutions in which their angular a
scale-dependent parts inSn(r ,s) are separated whens→1,
i.e., the structure functions have the following form:

Sn~r ,s!→ f n~s!Sn~r !, ~36!

where Sn(r )5^@u(x1r )2u(x)#n&;r jn. Factorizing the
angle and scale dependences in the limit ofs→1 is known
for the N-S turbulence too@19#. Plugging the ansatz fo
Sn(r ,s) in the structure function equation it is easy to s
that the intermittency exponent fixes to

jn5ad2d11, ~37!
8-7
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and f n(s)}sn ~details in Appendix B!. So this observation
encodes the information thatjn’s are constant. It is seen tha
the expression of scaling exponent is exactly the unkno
parameterx that appeared inS3,0(r ) in the previous section
The assumption of independence of the amplitude of the
gitudinal third-order structure function of the integral sca
fixed x51 hencejn51. Heuristic arguments@3,4,6,10,19#
about one-dimensional Burgers equation based on the s
singularities also suggest to us that the exponents wo
saturate tojn51. Experiences withd-dimensional Burgers
problem based on instanton analysis tell us that at least
structure of PDF ind dimensions is very similar to one d
mensions and the angular dependencies indicate a
F(m,r ,s)5F(ms,r ) in the limit when s→1 @11,14,19#.
Other methods like replica analysis in infinite dimensio
@11# also give the same picture regarding the saturation
scaling exponents. In spite of the obvious fact that the na
of singularities in three dimensions is much more comp
cated becauseSn(r ,s) separates as;snSn(r ) conditionedto
Eq. ~37!, it leads toF(m,r ,s)5F(ms,r ). This similarity also
led us to accept that the saturation value of intermitte
exponents isjn51. On the other hand, as soon asjn is fixed
because of the consistency condition we get

ad5d.

Albeit we should emphasize that all our rationales are ba
on the fact that dissipation is irrelevant to the equation
even-order moments, so we are not claiming that the va
for ad is valid in all regions. For obtaining the propose
form of structure functions in the limit whens→1, it is
sufficient to have the scaling form P(r ,u,s)
→(1/s)P(r ,u/s) for probability distribution of velocity in-
crements. Imposing this form in the PDF equation it is ea
to verify that whens→1 the following equation governs th
nonskewed part of the PDF in three-dimensions:

F2
]

]u
u2BG ]

]r
P1

A

r

]

]u
uP13r 2

]3

]u3
P50, ~38!

where P(u,r ) is the longitudinal velocity difference PDF
and B approaches zero asO(12s2) and A5jn51. The A
coefficient in Eq.~38! is responsible for the scaling of th
structure functions while theB term is an infinitesimal coef-
ficient that is zero for the longitudinal components and
value is responsible forn independence of the scaling exp
nents. The same form of PDF equation has been conject
recently by Yakhot for theN-S turbulence@19#. The forcing
contribution in the above equation is 3r 2]u

3P and it is irrel-
evant in the small scaler→0. We will take into account the
forcing contribution by imposing a matching condition f
PDF in the large scales with a distribution that is appro
mately Gaussian. Accordingly this boundary condition
duces the breakdown of Galilean invariance. Equivalen
the probability density and as a result the conditional pr
ability density of longitudinal velocity increments satisfies
Kramers-Moyal~KM ! evolution equation in terms of loga
rithmic length scalel5 ln L/r @28#:
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]P

]l
5LKM~u,l!P,

LKM5 (
n51

`

~21!n
]n

]un
@D (n)~u,l!P#, ~39!

whereD (n)(l,u)5snun @28#. We find that the coefficients
sn depend onA andB through the relation

sn5~21!n
A

~B11!~B12!~B13!•••~B1n!
.

Now it is easy to see that the solution of Eq.~39! can be
written as a scale-ordered exponential:

P~u,l!5T Fexp1E
l0

l

dl8LKM~u,l8!P~u,l0!G .
Using the properties of scale-ordered exponentials the c
ditional probability density will satisfy the Chapman
Kolmogorov equation. The same equation@i.e., Eq.~39!# ob-
viously governs the conditional PDF too but with anoth
boundary condition, i.e.,P(u,luu8,l)5d(u2u8). For a
simple case we proceed to find velocity difference P
P(u,l), that is

P~u,l!5E P~u,luu8,0!P~u8,0!du8. ~40!

Since we know that in integral scale PDF is Gaussian wit
good approximation soP(u,0);exp(2u2/2urms

2 ), invoking
the fact that conditional probability can be written as

P~u,l1uu8,l2!5T Fexp1E
l2

l1
dl8LKM~u,l1!d~u2u8!G ,

~41!

and the property of the proposed KM operator, i.e.,

LKM
† um5jmum, ~42!

wherejm51 is the scaling exponent of the longitudinal v
locity differenceSm . Substituting the scale-ordered form o
the conditional PDF in Eq.~40!, and expanding the assume
Gaussian form forP(u,0) we get

P~u,l!5 (
m50

`

exp~j2ml!S u

urms
D 2m ~21!m

m!

5S r

L DexpS 2
u2

2urms
2 D ,

where we have usedjm51. This result is consistent with th
proposed form of the PDF in the inner scales whereh!r
!L and consistent with numerical simulations in the o
dimensional Burgers turbulence@3,4,6,10,19#, where the
nonuniversal part of the PDF fits withP(Du,r )
5rG(Du/urms). The interesting point with respect to th
possible GI-breaking mechanism is that because the varia
8-8
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of the velocity-increment PDF in the integral scalesL is in
the order of the variance of theone-point PDF matching
between PDFs of inertial range and integral scale gives
to appearance of one-pointurms in the inertial range PDF
Once again we would stress that the results are based o
irrelevance of dissipation that is valid for even part of PD
While dissipation terms do not matter for even part of t
PDF, the odd part of PDF is obviously sensitive to dissip
tion effects. In case of even order moments, although
forcing terms are negligible with respect to the terms t
give the main scaling, however, their accounting wou
cause nonuniversal behaviors of the amplitudes in
velocity-increment structure functions, i.e., they depend
forcing correlation. In our case the forcing contribution
structure functions whenr→0 give some corrections as,

Sn~r !5Anr jn13An23

n~n21!~n22!

n1B

r 31jn23

31jn232jn
,

~43!

wherejn51. This leads to the nonuniversality of the PD
shapes in the inertial range@10,12–19#. For odd-order struc-
ture functions dissipation contributions areO(1) while forc-
ing are O(r 2) so the dissipation corrections are order
magnitudes more important. Although we cannot overco
the difficulty of dissipation terms we still think that the lea
ing term in the scaling of structure functions for odd-ord
moments are not sensitive to dissipation contributions.
find an intuition about the correction of dissipation terms
turn back to longitudinal third-order structure functio
S3,0(r ) since at least in this case we could estimate the
sipation effects due to stationarity. Returning to the expr
sion of S3,0(r ) in previous section and pluggingjn51 it is
immediately found that

S3,0~r !5A3r 1
~d15!k~0!

2

r 3

L2
1

4~d21!

3
k~0!r ln r .

~44!

So the dissipation contribution gives rise to logarithmic c
rections but still the dominant term is given by first scali
term whenr→0. This picture is very interesting since re
turning to Eq.~30! we see that scaling termsr x are homoge-
neous solutions of the structure function equations in stat
ary state. Puttingm51 one reaches the equation
longitudinal structure functionSn,0 as

S ]

]r
2

x

r DSn11,053
k~0!

L2
n~n21!r 2Sn22,01D2 . ~45!

Homogeneous solutions of these equations are behavin
r x while source terms included in the right-hand side
forcing and dissipation contributions. Fixingx51 it is clear
that inhomogeneous solutions for even-order moments
come negligible. This picture preserves also in the projec
of the dynamics whens→1. In this sense,LKM without GI-
breaking terms is responsible for intermittency. The ot
parts of theLKM operator are consisted of forcing and dis
pation contributions. All the information regarding the ske
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ness of the PDF in the inertial ranges are inherited in
breaking terms. This would be so, because the skewne
related to finite energy flux from large scales to small sca
but the information of large-scale eddies or one-point inf
mation k(0)5urms /L are just contained in GI-breakin
terms.

VI. DISCUSSION

We have studied the problem of three-dimensional B
gers equation supplemented with continuity. Because
many conservation laws mixing density with different com
ponents of velocity we think that the problem is basica
different from Burgers equation alone. Based on a mean fi
analysis an adjusting parameter emerges through the ca
lations that is the scaling exponent of conditional dens
density correlations. We show that there are two kinds
solutions for velocity-increment PDF. In the universal sca
invariant regime we find the right tail of longitudinal velocit
increments. It is argued that unlike the inviscid Burge
problem the inviscid case of the present problem develop
positive solution for the PDF. Whenn50 positivity of PDF
is the consistency relation that fixes the scaling exponen
density correlation toa35 7

2 . This is one of the interesting
results in this paper that resembles the back reaction of d
sity fluctuations to velocity fluctuations through conservati
laws. We could not determine the exponent when dissipa
anomaly is accounted for and that would call for more r
orous methods to be developed in future. In the nonunive
part we relax the scaling invariant form for the PDF arg
ment and as far as the nonskewed part of the velocity c
cade is concerned we develop the solution of PDF equa
for longitudinal velocity increments. The result shows th
the information of large scale forcing enters the argumen
longitudinal PDF in the inertial ranges by matching con
tion in the integral scale. We analyzed that dissipation c
tributions change the odd-order moments and contribute
the skewness of the PDF. However, we guess that they
not change the leading scaling contribution of the struct
functions in the limit ofr→0. Looking at the longitudinal
third-order moment gives an indication that supports
guess. Through the calculation we conclude that scaling
ponents in longitudinal-velocity-increment structure fun
tions show the extreme independency to the order of
moment and they saturate to a constant. We conclude tha
exponent is saturated tojn51. Fixing jn , the scaling expo-
nent of two-point density correlation function is also dete
mined simply asad5d.

Numerical analysis of the present problem would be v
valuable for clarifying the ideas developed here and pres
ing a testing ground for the approximate picture in this pap
The issues of density PDF and intermittency in density fl
tuations are worth studying too. Thanks to our recent d
understanding of passive scalar theory@30# we know that
highly compressible flow advected with white in tim
Gaussian-correlated velocity does not lead to intermitte
of density. However, in our case the intermittent structure
velocity still may cause intermittency in density and it is
challenge to understand this issue. In the case of deca
8-9
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Burgers problem added with continuity equation it is sho
recently that a careful analysis of density PDF necessitate
turn our attentions to geometrical properties of the unde
ing singularities in the problem@22#. However, again we
emphasize that the picture given in that paper cannot be
plied when one starts with momentum and continuity eq
tions. In any case, at this stage we cannot derive the PD
density fluctuation since we just treat the density fluctuati
in an effective way to obtain some information about t
velocity PDF and in this approximation detailed informati
regarding the density PDF cannot be analyzed. In orde
enlighten the way toward understanding the density PDF
useful way is simulating the conditional averages li
^r(x1)•••r(xm)u(Du)n& from which the dependence o
these conditional averages with respect to longitudinal ve
ity increments may be deciphered.
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APPENDIX A: UNIVERSAL REGIME

In the present appendix we will include some of the d
tails of calculations related to universal regime. In the fi
part we dwell with the form of structure function scaling a
in the second part we will remind the proof of positivity o
PDF in the strict inviscid case (n50) from which the expo-
nenta3 is fixed.

1. Solutions of the structure function equation
in universal regime

Plugging Eq.~24! in Eq. ~18! we find the following equa-
tion:

sz]z
2F1s]zF2a3s]zF2

s~12s2!

z
]s

2F1
11s2

z
]sF

2a3

12s2

z
]sF12~12s2!]s]zF

2z2~112s2!F5D2 , ~A1!

wherez5mr anda3 is the density-density exponent. It ca
be proved thatF(z,s) satisfying the above equation has t
important property thatF(z,s)5F(2z,2s), which is in ac-
cordance with symmetry properties of the Burgers equat
When m→` one can neglect the dissipation term and p
pose the following solution forF(z,s) as

F~z,s!;exp@zg f ~s!#, ~A2!

whereg53/2 andf (s) would be simultaneously satisfied i
05630
to
-

p-
-
of
s

to
e

c-

a
.

f

-
t

n.
-

9

4
s f2~s!13 f ~s! f 8~s!~12s2!1 f 82~s!~2s1s3!5~112s2!,

~A3!

2s~12s2! f 9~s!1@~42a3!2~22a3!s2# f 8~s!

1S 9

4
2

3

2
a3D s f~s!50. ~A4!

Equation~A4! can be converted to hypergeometric differe
tial equation@31# by changing the variables25w so that it is
written as

w~12w!
d2f

dw2
1@c2~a1b11!w#

d f

dw
2ab f50,

~A5!

where

a5
a3

2
2

3

4
,

b52
3

4
,

c5
a323

2
.

Whenc is not an integer there are two independent solutio
in the regionuwu,1 of complex plane so the general sol
tion is a linear combination of them

f ~w!5C12F1~a,b;c;w!1C2w12c
2F1

3~a2c11,b2c11;22c;w!, ~A6!

where 2F1(a,b;c;w) is the hypergeometric function@31#.
We are interested ins51 and since the hypergeometric fun
tion 2F1(a,b;c;w) has branch points inw51 andw50 the
parameters in the arguments may be strongly limited. T
coefficient C1 becomes zero since the first function in th
linear combination will diverge ins51 and the only finite
solution will emerge if

b2c1150⇒a5
7

2
. ~A7!

In fact this condition will cause the series expansion of
second hypergeometric function to terminate trivially af
the first term since

2F1~a,b;c;x!511
a•b

c•1
x1

a~a11!b~b11!

c~c11!•1•2
x21••• .

~A8!

Since the solution off (s) would be consistent with Eq.~A1!
simultaneously the undetermined coefficientC2 is fixed. Es-
sentially the Eq.~A2! put a constraint onf (1)52/A3. The
overall behavior off (s) is
8-10
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f ~s!5
2

A3
s3/2. ~A9!

Substituting Eq.~A9! functional in Eq.~A2!, the proposed
scaling in the paper, i.e.,F(mr ,s)5F(mrs) recovers. We
would stress thatassumingthe proposed ansatz of Eq.~A2!
the parametera357/2 already is fixed in the level of positiv
tail of universal generating function.

2. Positivity of the left tail in universal regime

The calculations in this subsection just remind of some
the general arguments for fixing thea3 due to positivity of
the PDF. Actually in previous subsection we already fix
the value in the inviscid case but we did not argue about
positivity of the corresponding PDF since the ansatz tha
used in the previous section just works in the right tail. W
want to remind how the arguments of positivity may beco
t

b

we
e
en

05630
f

d
e

is

e

consistent in giving the same value as derived in the previ
section. Back to Eq.~26! in the paper and following@12,17#
we write the Eq.~26! in terms ofc that is defined asP(y)
5e2y3/18c(y). So we get

c91F2y4

36
1

a322

3
yGc50. ~A10!

Rewriting the following equation in terms ofc5f/y and
then changing the independent variable toz5y3/9 one finds

2f81S 1

4
2

k

z
2

m221/4

z2 D f50, ~A11!

wherek5(a322)/3 andm5 1
6 . This is the well-known Wit-

taker equation@31# and we can immediately use the indepe
dent solutions in terms of hypergeometric functions as f
lows:
f~z!5H e2z/2FC1z2/3M S 1

2
1m2k,112m,zD1C2z1/3M S 1

2
2m2k,122m,zD G z.0

ez/2FC18~2z!2/3M S 1

2
1m1k,112m,2zD1C28~2z!1/3M S 1

2
2m1k,122m,2zD G z,0.

~A12!
a-
t is

nt,

rst
m

The functionsM (a,b,z) are hypergeometric functions tha
are defined as

M ~a,b,z!51F1~a,b,z!5(
n

~a!n

~b!nn!
zn,

where ~a!n5
G~a1n!

G~a!
. ~A13!

Continuity in x50 requires thatC15C28 and C152C18 so
that two unknown coefficients remain to be determined
the asymptotic behavior of PDF.

In order to analyze the asymptotic form of the solution
remind that the series expansion in the definition of hyp
geometric functionM can be estimated by steepest desc
method in a simpler form as

M;
G~b!

G~a!
za2bez1OS 1

zD . ~A14!

Now with the above form forM functions we request thatC1
andC2 be determined so that whenz→` different diverging
terms cancel out, i.e.,

C2

GS 4

3D
GS 2

3
2kD 1C1

GS 2

3D
GS 1

3
2kD 50,

~A15!
y

r-
t

C2

GS 4

3D
GS 2

3
1kD 2C1

GS 2

3D
GS 1

3
1kD 50.

For obtaining nontrivial result for the above system of equ
tions determinant of the coefficients would be zero, tha
we get

G~4/3!G~2/3!

G~2/31k!G~1/32k!
1

G~4/3!G~2/3!

G~2/32k!G~1/31k!
50.

~A16!

This condition, which is obtained by finiteness constrai
quantizes the allowed values of the parameterk as

k5n1
1

2
, n50,1,2, . . . . ~A17!

However, one can check that all of the integer values ofn do
not correspond to a positive solution. However, the fi
value, i.e.,n50, does gives rise to a positive solution fro
which one fixes the parametera3 to

k5
1

2
⇒a35

7

2
. ~A18!
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APPENDIX B: SOLUTION OF STRUCTURE FUNCTION
EQUATION IN NONUNIVERSAL REGIME

In this part some straightforward manipulations regard
the scaling ofSn(r ,s) with respect to angle variables in the
limit of s→1 in non-universal regime is reminded. In fact
Eq. ~35!, neglecting the viscose and forcing contributions
impose the ansatzSn(r ,s)5r jnf (s). From there we find an
equation that similarly to the equation of universal struct
functions can be converted to a hypergeometric equation
ter changing the independent variable tow5s2. The ob-
tained equation is again in the form of Eq.~A1! but the
parametersa, b, andc are defined as follows:

a52
n

2
,

b52
jn2ad

2
,

c5
31ad2d2jn2n

2
. ~B1!

It is standard that the general solutions inuwu,1 region can
be written as the following linear combination:
-

dia
,

, A

z,

05630
g

e
f-

f ~w!5C12F1S 2n

2
,
ad

2
2

j

2
;
3

2
1

ad2jn2n2d

2
;wD

1C2w[ ~21/2)2(ad2jn2n2d)/2]
2F1

3S jn1d2ad21

2
,
d2ad21

2
;
3

2

1
ad2jn2n2d

2
;wD . ~B2!

We are interested in the pointw51 that is pathologic in the
sense that it is one of the branch points of hypergeome
function. Since the first hypergeometric function is not fin
and real whenn gets large, one would chooseC150. The
only way for getting a finite solution inw51 in the second
term is terminating the series of hypergeometric function j
by trivially putting first or second argument to zero. So w
get

jn5ad2d11. ~B3!

We note that terminating the series expansion spoils down
the structure of hyper-geometric function and converts it t
constant but this is the only way in which one is able to g
a finite and real solution forf (s) in s51 @31#.
,
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Pis’ma Zh. Éksp. Teor. Fiz.61, 980 ~1995! @JETP Lett.61,
1012 ~1995!#; Phys. Rev. Lett.78, 1452~1997!; G. Falkovich
and V. Lebedev, e-print chao-dyn/9708002.

@14# V. Gurarie and A. Migdal, Phys. Rev. E54, 4908~1996!.
@15# J.P. Bouchaud and M. Mezard, Phys. Rev. E54, 5116~1996!;

M. Mezard, e-print cond-mat/9801029.
@16# T. Gotoh and R.H. Kraichnan, Phys. Fluids10, 2859~1998!..
@17# S. Boldyrev, Phys. Rev. E55, 6907~1997!.
@18# S. Boldyrev, Phys. Plasmas54, 1681~1998!; Phys. Rev. E59,

2971 ~1999!.
@19# V. Yakhot, Phys. Rev. E57, 1737 ~1997!; 60, 5544 ~1999!;

e-print chao-dyn/9909017; Phys. Rev. E63, 026307~2001!.
@20# W.E., K. Khanin, A. Mazel, and Ya.G. Sinai, Phys. Rev. Le

78, 1904~1997!.
@21# W.E. and E. Vanden Eijnden, Commun. Pure Math. Appl.53,

852 ~2000!; Phys. Fluids12, 149 ~2000!; Phys. Rev. Lett.83,
2572 ~1999!; R. H. Kraichnan, Phys. Fluids11, 3738~1999!.

@22# J. Bec and U. Frisch, Phys. Rev. E61, 1395~2000!; U. Frisch,
J. Bec and B. Villone, Physica D~to be published!; J. Bec, U.
Frisch, and K. Khanin, J. Fluid Mech.416, 239 ~2000!.
chao-dyn/9910001.

@23# D. Bernard and K. Gawedzki, J. Phys A31, 8735~1998!; M.
Bauer and D. Bernard,ibid. 32, 5179~1999!.

@24# S.N. Gurbatov, S.I. Simdyankin, E. U. Frisch, and G. Toth,
Fluid Mech.334, 339 ~1997!; L. Frachebourg and Ph.A. Mar
tin, ibid. 417, 323 ~2000!.

@25# F. Hayot and C. Jayaprakash, Phys. Rev. E57, R4867~1998!;
Int. J. Mod. Phys. B14, 1781~2000!.
8-12



. A

,

THREE-DIMENSIONAL FORCED BURGERS TURBULENCE . . . PHYSICAL REVIEW E 63 056308
@26# A. Rastegar, M.R. Rahimi Tabar, and P. Hawaii, Phys. Lett
245, 425 ~1998!.

@27# A. Naji, S. Rouhani, and A. Reza Rastegar~unpublished!.
@28# J. Davoudi and M.R. Rahimi Tabar, Phys. Rev. Lett.82, 1680

~1999!.
05630
@29# K. Sreenivasan~private communication!.
@30# K. Gawedzki and M. Vergassola, Physica D138, 63 ~2000!.
@31# I.S. Gradshteyn and I.M. Ryzhik,Table of Integrals, Series

and Products~Academic Press, San Diego, 1994!.
8-13


