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We derive the Kramers-Moyal equation for the conditional probability density of velocity incremen
from the theoretical model recently proposed by V. Yakhot [Phys. Rev. E57, 1737 (1998)] in the limit
of the high Reynolds number. We show that the higher order (n $ 3 ) Kramers-Moyal coefficients
tend to zero and the velocity increments are evolved by the Fokker-Planck operator. Our results
compatible with the phenomenological description, developed for explaining recent experiments
R. Friedrich and J. Peinke [Phys. Rev. Lett.78, 863 (1997)]. [S0031-9007(99)08500-2]
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The problem of scaling behavior of longitudinal veloc
differenceU  usx1d 2 usx2d in turbulence and the prob
ability density function ofU, i.e., PsUd, attracts a grea
deal of attention [1–7]. Statistical theory of turbulen
has been brought forward by Kolmogorov [8] and furth
developed by others [9–12]. The approach is to mo
turbulence using stochastic partial differential equatio
Kolmogorov conjectured that the scaling exponents
universal, independent of the statistics of large-scale fl
tuations and the mechanism of the viscous damping, w
the Reynolds number is sufficiently large. However,
cently it has been found that there is a relation betw
the probability distribution function (PDF) of velocity an
those of the external force (see [13] for more details).
this direction, Polyakov [1] has recently offered a field th
oretic method to derive the probability distribution or de
sity of states ins1 1 1d dimensions in the problem of th
randomly driven Burgers equation [14,15]. In one dim
sion, turbulence without pressure is described by the B
ers equation [see also [16] concerning the relation betw
the Burgers equation and the Kardar-Parisi-Zhang (K
equation]. In the limit of the high Reynolds number, us
the operator product expansion (OPE), Polyakov redu
the problem of computation of correlation functions in t
inertial subrange, to the solution of a certain partial d
ferential equation [17,18]. Yakhot recently [13,19] ge
eralized the Polyakov approach in three dimensions
found a closed differential equation for the two-point g
erating function of the “longitudinal” velocity differenc
in the strong turbulence (see also [20] about the clo
equation for the PDF of the velocity difference for tw
and three-dimensional turbulence without pressure).
the other hand, recently [21,22] from a detailed anal
of experimental data of a turbulent free jet, Friedrich a
Pienke have been able to obtain a phenomenologica
scription of the statistical properties of a turbulent casc
using a Fokker-Planck equation. In other words, they h
seen that the conditional probability density of veloc
increments satisfies the Chapman-Kolmogorov equa
Mathematically this is a necessary condition for the
0031-9007y99y82(8)y1680(4)$15.00
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locity increments to be a Markovian process in terms
length scales. By fitting the observational data they h
succeeded in finding the different Kramers-Moyal (KM
coefficients, and they find that the approximations of
third and fourth order coefficients tend to zero, where
the first and second coefficients have well-defined lim
Then by addressing the implications dictated by [23] th
rem they have gotten a Fokker-Planck evolution opera
As an evolution equation for the probability density fun
tion of velocity increments, the Fokker-Planck equati
has been used to give information on the changing sh
of the distribution as a function of the length scale.
using this strategy the information on the observed in
mittency of the turbulent cascade is verified. In their d
scription and based on simplified assumptions on the d
and diffusion coefficients, they have considered two p
sible scenarios in order to indicate that both the K
mogorov 41 and 62 scalings are recovered as poss
behaviors in their phenomenological theory.

In this paper we derive the Kramers-Moyal equati
from the Navier-Stokes equation and show how the hig
order (n $ 3) Kramers-Moyal coefficients tend to zero
the high Reynolds number limit. Therefore, we find t
Fokker-Planck equation from first principles. We sho
that the breakdown of the Galilean invariance is resp
sible for the scale dependence of the Kramers-Moyal
efficients. Finally, using the path-integral expression
the PDF we show how small-scale statistics is affected
PDF’s in the large scale and this is confirmed by La
dau’s remark that the large-scale fluctuations of turbule
production in the integral range can invalidate the K
mogorov theory [9,10].

Our starting point is the Navier-Stokes equations,

vt 1 sv ? =dv  n=2v 2
=p
r

1 fsx, td ,

= ? v  0 (1)

for the Eulerian velocityvsx, td and the pressurep with
viscosity n, in N dimensions. The forcefsx, td is the
© 1999 The American Physical Society
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external stirring force, which injects energy into t
system on a length scaleL. More specifically, one can
take, for instance, a Gaussian distributed random fo
which is identified by its two moments,

kfmsx, tdfnsx0, t0dl  ks0ddst 2 t0dkmnsx 2 x0d , (2)

and kfmsx, tdl  0, where m, n  x1, x2, . . . , xN . The
correlation functionkmnsrd is normalized to unity at the
origin and decays rapidly enough wherer becomes large
or equal to the integral scaleL.

The force-free NS equation is invariant under space-t
translation, parity, and scaling transformation. Also it
invariant under the Galilean transformation,x ! x 1 Vt
andy ! y 1 V , whereV is the constant velocity of th
moving frame. Both boundary conditions and forcing c
violate some or all of the symmetries of the force-free
equation. However, it is usually assumed that in the h
Reynolds number flow all symmetries of the NS eq
tion are restored in the limitr ! 0 and r ¿ h, where
h is the dissipation scale where the viscous effects
come important. This means that in this limit the ro
mean square velocity fluctuationsurms 

p
ky2l, which

are not invariant under the constant shiftV , cannot en-
ter the relations describing moments of velocity differen
Therefore, the effective equations for the inertial-range
locity correlation functions must have the symmetries
the original NS equation. For many years this assum
tion was the basis of turbulence theories. But based
the recent understanding of turbulence, some of the c
straints on the allowed turbulence theories can be rela
[13]. Polyakov’s theory of the large-scale random for
driven Burgers turbulence [1] was based on the assu
tion that weak small-scale velocity difference fluctuatio
(i.e., jysx 1 rd 2 ysxdj ø urms andr ø L), whereL is
the integral scale of the system, obey theG-invariant dy-
namic equation, meaning that the integral scale and
single-pointurms induced by random forcing cannot ent
the resulting expression for the probability density. A
cording to [13] it has been shown how theurms enters
the equation for the PDF and therefore breaks theG in-
variance in the limited Polyakov’s sense. We are int
ested in the scaling of the longitudinal structure funct
Sq  kfusx 1 rd 2 usxdgql  kUql, whereusxd is the x
component of the three-dimensional velocity field, andr is
the displacement in the direction of thex axis. Let us de-
fine the generating function̂Z for the longitudinal structure
functionẐ  kelUl. According to [13] in the spherical co
ordinates the advective term in Eq. (1) involves the ter

Os ≠2Ẑ
≠l≠r d, Os ≠Ẑ

r≠l d, Os ≠Ẑ
l≠r d, Os Ẑ

lr d [20]. It is noted that the
advection contributions are accurately accounted for in
equation ofẐ, but it is not closed due to the dissipation a
pressure terms. Using Polyakov’s OPE approach, Yak
has shown that the dissipation term can be treated e
while the pressure term has an additional difficulty. T
pressure contribution leads to effective energy redistr
tion between components of the velocity field, and it h
e
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a nontrivial effect in the dynamics of the NS equatio
Proceeding to find a closed equation for the genera
function of the longitudinal velocity difference,̂Z, the
dissipation and pressure terms in Eq. (1) give contri
tions, and the longitudinal part of the dissipation te
renormalizes the coefficient in front ofOs 1

l d in the equa-
tion for Ẑ [13]. Also, it generates a term with the order

OsUd which can be written in terms of̂Z asl
≠Ẑ
≠l . Taking

into account all the possible terms and using the sym
try of the PDF, i.e.,PsU, rd  Ps2U, 2rd, the following
closed equation for̂Z can be found [13]:

≠2Ẑ
≠l≠r

2
B0

l

≠Ẑ
≠r


A
r

≠Ẑ
≠l

2 Cl
≠Ẑ
≠l

1 3r2l2Ẑ , (3)

where the parametersA, B0, andC are determined from
the theory. Also we suppose thatkmn has the structure

kmnsri,jd  ks0d f1 2
jri,j j

2

2L2 dm,n 2
sri,j dmsri,jdn

L2 g with ks0d 
1 and ri,j  xi 2 xj . The Gaussian assumption fo
“single-point” probability density fixes the value of th
coefficient C 

urms

L and theC term corresponds to th
breakdown ofG invariance in the limited Polyakov’s
sense [1].

In the limit r ! 0 the equation for the probability
density is derived from Eq. (3) as

2
≠

≠U
U

≠P
≠r

2 B0
≠P
≠r

 2
A
r

≠

≠U
UP 1

urms

L
≠2

≠U2 UP .

(4)

Using the exact resultsS3  2
4
5 er in the small scale

(e is the mean energy dissipation rate) one findsA 
31B

3 , where B  2B0 . 0 [13]. It is easy to see tha
Eq. (4) can be written as≠rP  s2≠UU 2 B0d21 3

f2sAyrd≠UU 1 surmsyLd≠2
UUgP, and so its solution can

obviously be written as a scalar-ordered exponential [2

PsU, rd  T fe

Rr

r0
dr 0LKMsU,r 0d

1 PsU, r0dg ,

whereLKM can be obtained formally by computing the i
verse operator. Using the properties of scale-ordered
ponentials the conditional probability density will satis
the Chapman-Kolmogorov equation. Equivalently we d
rive that the probability density and, as a result, the c
ditional probability density of velocity increments satis
a KM evolution equation,

2
≠P
≠r


X̀
n1

s21dn ≠n

≠Un
fDsndsr , UdPg , (5)

where Dsndsr , Ud 
an

r Un 1 bnUn21. We have found
that the coefficientsan and bn depend on A, B,
urms, and the integral length scaleL which are given
by the recursion relations2

Pm
n1

m!
sm2nd! an 

Am
m1B ,

2
Pm

n1
m!

sm2nd! bn  s urms

L d msm21d
sm1Bd . We scale the

velocities as Ũ 
U

sryLd1y3 and introduce a logarith

mic length scalel  lns L
r d which varies from zero

to infinity as r decreases fromL to h. Thus the
1681
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form of D̃s1dsŨ, rd and D̃s2dsŨ, rd in the equivalent
description would be D̃s1dsŨ, rd  2s A

11B dŨ and
D̃s2dsŨ, rd  s A

s21Bd s11Bd dŨ2 2 s r
L d2y3urmss

s1d
s21Bd dŨ.

The drift and diffusion coefficients for various scales
l, determined in the theory of Yakhot, show the sa
functional form as the calculated coefficients from t
experimental data [21,22].

In comparison with the phenomenological theory
Friedrich and Pienke we are able to construct a KM eq
tion for velocity increments that is analytically derive
from the Yakhot theory which is based on just general
derlying symmetries and OPE conjecture. Furthermo
this viewpoint on Eq. (4) gives the expressions for sc
dependence of the coefficients in the KM equation. T
important result is that scale dependent KM coefficients
proportional tourms which gives a probable relationshi
between the breakdown ofG invariance and the scale de
pendence of the KM coefficients in the equivalent theo
The two unknown parametersA and B in the theory are
reduced to 1 by fitting thej3  1, so all the scaling ex-
ponents andDsnd’s are described by one parameter,B.
Considering the results in [13,21] on which the val
of B is obtained, we have used the valueB > 20 and
have calculated the numerical values of the KM coe
cients. Ratios of the first three coefficientsan and bn

are a3ya2  0.04, a4ya2  0.001, b3yb2  0.04, and
b4yb2  0.001. From the comparison of numerical va
ues of higher order coefficients we find that the ser
can be cut safely after the second term, and a good
proximation for the evolution operator of velocity incre
ments is a Fokker-Planck operator. According to [1
the value of the parameter,B > 20 is calculated numeri-
cally in the limit of infinite Reynolds numbers. Usin
this value for the calculation of the numerical values
D̃s1d andD̃s2d we find that the contribution of scale depe
dent terms is essentially negligible. As it is well know
the Fokker-Planck description of probability measure
equivalent with the Langevin description written as [2
≠Ũ
≠l  D̃s1dsŨ, ld 1

p
D̃s2dsŨ, ld hsld, where hsld is a

white noise and the diffusion term acts as a multiplic
tive noise. By considering the Ito prescription and usi
the path-integral representation of the Fokker-Planck eq
tion, we can give an expression for all the possible pa
in the configuration space of velocity differences and th
demonstrate the change of the measure under the ch
of scale, i.e.,

PsŨ2,l2 j Ũ1, l1d


Z

D fŨge
2

Rl2

l1
dlf ≠Ũ

≠l
2D̃s1dsŨ,ldg2y4D̃s2dsŨ,ld

. (6)

When calculating, the measure of the path integra
meaningful when some form of discretization is chos
[23], but we have written it in a formal way. Usin
the forms of D̃1 and D̃2 and approximating them with
scale independent ones in the infinite Reynolds num
limit, one can easily see that the transition functional c
1682
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be written in terms of lñU. It is an easy way to see
how the large scalel ! 0 Gaussian probability density
can change its shape when going to small scalesl !
` and consequently give rise to intermittent behavi
Instead of working with the probability functional o
velocity increments, the formal solution of Fokker-Plan
equation, as a scale-ordered exponential [24], can
converted to an integral representation for the probabi
measure of velocity increments wheñD1 > 2a1sldŨ
andD̃2 > a2sldŨ2, i.e.,

PsŨ, ld 
eg0sldp
4pgsld

Z 1`

2`

e2ss2dyf4gsldgfsŨeg1sld2sd ds ,

(7)

whereg0sld 
R

l

0 f2a1sl0d 1 2a2sl0dg dl0 andg1sld Rl

0 f2a1sl0d 1 3a2sl0dg dl0 and gsld 
Rl

0 a2sl0d dl0

andfsŨd is the probability measure in the integral leng
scalessl ! 0d . We consider the Gaussian distributio
fsŨd > e2mŨ2

in the integral scale which is a reasonab
choice (experimental data show that up to third mome
the PDF in the integral scale is consistent with the Gau
ian distribution [13]), and we derive the dependence
the variance of the probability density on the scale in t
limit when the original distribution satisfies the conditio
m ø 1. The result shows an exponential dependen
such asm ! me2z , wherez  3a2 2 a1. The consis-
tent picture with the shape change of probability meas
under the scale is that whenl grows, the width decrease
and vice versa. Moreover, we should emphasize that
shape change is somehow complex which gives so
corrections in orderOsm2Ũ4d even in this simplifying
limit, i.e., m ø 1. Starting with a Gaussian measure
integral scales and using the calculated scale indep
dent Fokker-Planck coefficients, we have numerica
calculated the PDF’s for fully developed turbulence a
Burgers turbulence in different length scales from whi
their plots in Figs. 1 and 2 are completely compatib
with experimental and simulation results [13,21,22]. T
extreme case of Burgers problem (i.e.,B > 0) shows the
ever localizing behavior as if in the limit ofl ! ` goes
to a Dirac delta function which again is consistent wi
our knowledge about Burgers problem [6,13]. Clea
Eqs. (4) and (5) give the same result for the multifrac
exponent of structure function, i.e.,Snsrd > Anrjn is
derived to bejn 

s31Bdn
3sn1Bd [13].

In summary, we have constructed a theoretical brid
between two recent theories involving the statistics of lo
gitudinal velocity increment in fully developed turbulenc
On the basis of the recent theory proposed by Yakhot
showed that the probability density of longitudinal velo
ity components satisfies a Kramers-Moyal equation wh
encodes the Markovian property of these fluctuations
a necessary way. We are able to give the exact form
Kramers-Moyal coefficients in terms of a basic parame
in the Yakhot theoryB. The qualitative behavior of drift
and diffusion terms are consistent with the experimen
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FIG. 1. Schematic view of the logarithm of PDF in terms
different length scales. These graphs are numerically obta
from the integral representation of PDF at the Fokker-Plan
approximation. The curves correspond with the scalesLyr 
1.5, 2, 5, 10, and 20.

outcomes [21]. As the most prominent result of our wo
we could find the form of path probability functional o
the velocity increments in scale which naturally encod
the scale dependence of probability density. This give
clear picture about the intermittent nature in fully deve
oped turbulence.

We should emphasize that the derivation of the K
equation is not restricted to Polyakov’s specific approa
One can show that similar results could be obtained by
conditional averaging methods [25,26]. A clearly analy
form of the KM coefficientsDsnd can be estimated numeri
cally but analytic derivation is not possible [26]. Our wo
might be generalized to give a theoretical basis for the M
kovian fluctuations of the moments of height difference
the surface growth problems like KPZ [16,27], and we b
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L
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P
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U

FIG. 2. Schematic view of the logarithm of PDF in th
Burgers turbulence (B > 0), in terms of different length
scales. These graphs are numerically obtained from the inte
representation of PDF at the Fokker-Planck approximati
The scales areLyr  1.5, 2, 5, 10, and 20.
d
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lieve that it would be possible to derive the Kramers-Moy
description for the statistics of energy dissipation [28].
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