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Abstract
Data sampled at discrete times appears as a succession of discontinuous jumps, even if the underlying
trajectory is continuous.We analytically derive a criterion that allows one to checkwhether for a given,
even noisy time series the underlying process has a continuous (diffusion) trajectory or has jump
discontinuities. This enables one to detect and characterize abrupt changes (jump events) in given
time series. The proposed criterion is validated numerically using synthetic continuous and
discontinuous time series.We demonstrate applicability of our criterion to distinguish diffusive and
jumpy behavior by a data-driven inference of higher-order conditionalmoments from empirical
observations.

1. Introduction

Many empirical time series exhibit fluctuations that are interrupted by jumps in very short time between
different states of a system [1]. Examples include dynamics of charge transport in variousmaterials [2],
stochastic resonance [3], moving fronts [4], light curves of variable astronomical objects [5], fluctuations of wind
and solar power systems [6], early warning signals of systems near to their tipping points [7], transitions in
financial [8, 9] and climate data [10], ion channel dynamics [11], eyemovements [12], ormovement and
foraging paths of animals [13]. Jumps generate pronounced discontinuities in time series of observables and
apparently, the underlying trajectories are unlikely to be generated by statistical continuous, diffusion-type
processes. Such processes have been extensively studied [14, 15] and are commonlymodeled by a Langevin
equation (using the Itô interpretation) as

= +( ) ( ) ( ) ( ) ( )x t a x t t b x t W td , d , d , 1

where { ( ) }W t t, 0 is a scalarWiener (Brownian)motion, and a(x, t) and ( )b x t,2 denote the state-dependent
deterministic drift and the diffusion functions. A process x(t) generatedwith equation (1) is a continuous
diffusion process if a(x, t) and b(x, t) are smooth and do not change dramatically over a short time interval td
[16]. The unknown functions a(x, t) and b(x, t) can be found non-parametrically [17]—i.e. directly from
measured time series—in terms of the first- and second-order Kramers–Moyal (KM) coefficients. For a
continuous diffusion process (equation (1) and for infinitesimal td ), we have
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with s>0.Here theKMcoefficients are given by = ( ) ( )( ) ( )M x t K x t, lim ,m
t t

m
d 0

1

d
, with the conditional

moments = á + - ñ=( ) ( ( ) ( )) ∣( )
( )K x t x t t x t, dm m

x t x .
For this type of process and using the conditional probability distribution, one can show that x(t) satisfies

Lindeberg’s continuity condition, given some δ>0 [16]
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whereD = + -( ) ( ) ( )x t x t t x td .
When analyzing empirical data, onemightwant to ensure that the corresponding time series can indeed be

modeled by equation (1). For this purpose, one should check if the fourth-order KMcoefficient ( )( )M x t,4

vanishes. If this was the case, then—according to the Pawula theorem [18]—all higher-order (>2) coefficients
will vanish too ( =  = = = ¼ =( ) ( ) ( ) ( )M M M M0 04 3 5 6 ), and the probability density of the underlying
process can be described by a Fokker–Planck equation [17].

In general, for a given time series, the non-vanishing of higher-order (>2)KMcoefficients can be related to
the existence of jumps in the time series [16]. In this case, the KMcoefficients provide an upper limit for the

continuity condition (equation (3)): 
d

( ) ( )( )
C t M x t,m

m , which holds for anym�3 (provided the first- and
second-order coefficients are non-vanishing) [16]. Therefore, any vanishing higher-order KMcoefficients,
particularly the fourth-order one ( ( )( )M x t,4 ), guarantee that the underlying process is statistically continuous.
Depending on the problem formulation, checking the boundedness of the aforementioned continuity condition
may be easier than estimating the tail of the probability distribution.

Here we demonstrate that afinite time interval td not only influences thefirst- and second-order KM
coefficients [19] but also causes non-vanishing higher-order (>2) ones.We derive a novel criterion to check
whether for a given, even noisy time series the underlying process has a continuous trajectories or has jump
discontinuities.

This paper is organized as follows. In sections 2 and 3, we present higher-order conditionalmoments of
continuous, linear and nonlinear diffusion processes as well as of jump-diffusion processes.We then present in
section 4 a novel criterion to distinguish diffusive and jumpy behavior in time series. In section 5, we derive the
first- and second-order conditionalmoments of noisy empirical time series, and in section 6, we provide our
results from an analysis of two real-world time series.We summarize our paper in section 7. All derivations and
proofs are presented in appendices A andB.

2.Higher-order conditionalmoments of continuous, linear andnonlinear diffusion
processes

Webegin by deriving conditionalmoments of the Langevin equation (1) for different orders of the time interval
td (see appendix A and [20]).Wefind the following expressions for the conditionalmoments of orders
Î { }m 2, 4, 6 , if we consider terms up to the order of the first non-vanishing power in( )td 2 form=2 and

m=4, respectively( )td 3 form=6 (herewe omit the x- and t-dependence of a and b to enhance readability)
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where the subscript ‘d’ denotes diffusion, andwhere ¢a and ¢b denote the first and a″ and b″ the second
derivatives with respect to state variable x.We check the validity of expansions in equation (4) aswell as of those
for conditionalmoments of orders Î { }m 1, 3, 5 (see appendix A) by reconstructing stochastic processes with
knowndrift and diffusion coefficients from synthetic time series sampledwith time intervals td spanning three
orders ofmagnitude.

For both linear and nonlinear continuous processes described by the Langevin equation (equation (1)), we
find a very good agreement between estimated conditionalmoments and the respective theoretical predictions
(see figures 1 and 2), demonstrating the validity of our approach for such systems. As expected, we find the
second-order conditionalmoment to depend linearly on td while the fourth-order one scales with td 2 (see
figure 3). Thesefindings demonstrate that—even for continuous diffusion processes—non-vanishing higher-
order (>2) conditionalmoments can originate from afinite time interval td .

With the second- and fourth-order conditionalmoments for small td wefind
( ) ( ( ))( ) ( )K x t K x t, d 3 , dd

4
d

2 2, which confirmsWick’s theorem [21, 22] and follows from the fact that the short-
time propagator of the Langevin dynamics (equation (1)) is aGaussian distribution [17]. No such short-time
propagator, however, is known for general jump-diffusion processes (see below). Infigure 4, we show this
relationship for the aforementioned continuous nonlinear diffusion process. Similar findings can be obtained
for a continuous linear diffusive process, andwe note that a normalization of the time series leaves this
relationship between the fourth- and second-order conditionalmoments unaffected. For the analysis of
empirical data, we propose to use this relationship to judgewhether the fourth-ordermoment tends to zero.
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Figure 1.Conditionalmoments ( )( )K x t, dd
1 to ( )( )K x t, dd

6 estimated from exemplary time series of a continuous linear diffusion
process (equation (1)), generatedwith a(x)=−px and b(x)=b0 (p = 10, b0=1) andwith a time interval = -td 10 5. Time series
consisted ofN=3×106 data points.We observed extreme events up to about±3σ for these time series (σ denotes the standard
deviation). Error bars indicate the standard error of themean (SEM) in each bin. Theoretically expected values are shown as red lines,
and in the range±2σmore than two-thirds of these values lie within the SEM interval of estimated conditionalmoments. Deviations
in the tails are due to low statistics.

Figure 2. Same asfigure 1 but for exemplary time series of continuous nonlinear diffusion process, generatedwith a(x)=−px and
= +( )b x b b x0 1

2 (p = 5, b0=0.1, b1=0.05) andwith a time interval = -td 10 5. Time series consisted ofN=3×106 data points.
We observed extreme events up to±4σ for these time series. Theoretically expected values are shown as red lines, and in the range
±1.5σmore than two-thirds of these values lie within the SEM interval of estimated conditionalmoments. Deviations in the tails are
due to low statistics.
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3.Higher-order conditionalmoments of jump-diffusion processes

As a third example, we consider a dynamical stochastic equation that is capable of generating a discontinuous
trajectory [16]

Figure 3.Dependencies of conditionalmoments ( )( )K x t, dd
2

0 and ( )( )K x t, dd
4

0 for some x=x0 on time intervals td for a continuous
nonlinear diffusion process (seefigure 2; we obtained similar findings for the continuous linear diffusion process). Conditional
moments were estimated fromnormalized time series (zeromean and unit variance).When analyzing empirical data, the ratio
between fourth- and second-order conditionalmoment (see inset) is often used to judgewhether the fourth-ordermoment tends to
zero. Lines are for eye guidance only.

Figure 4.Relationship between the fourth- and squared second-order conditionalmoment ( )( )K x t, dd
4

0 and ( ( ))( )K x t, dd
2

0
2 for

different time intervals td . Continuous nonlinear diffusive process generatedwith time intervals
Î ´ ´ ´- - - - -{ }td 10 , 2 10 , 4 10 , 6 10 , , 106 6 6 6 3 .We chose x0 around themean of the respective time series. Lines are for eye

guidance only.
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x= + +( ) ( ) ( ) ( ) ( ) ( )x t a x t t b x t W t J td , d , d d , 5

where { ( ) }W t t, 0 is a scalarWiener process, a(x, t) and b(x, t) are again the state-dependent deterministic
drift and themultiplicative functions, and J(t) is a time-homogeneous Poisson jumpprocess (we assume that
jump events are rare and can bemodeled via a Poisson process). Jumps have state-dependent rateλ(x) (which
defines themeanwaiting time τp=1/λ between successive jumps) and size ξ, whichwe assume to beGaussian
distributedwith zeromean and variance sx

2 (or to follow any symmetric distributionwith finitemoments).
For infinitesimal td , it was shown recently [16] that
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(the subscript ‘j’ denotes jumpy), and in the following, we derive conditionalmoments for different orders of the
finite time interval td . From equation (6), wewould expect for infinitesimal td that all conditionalmoments
(except the odd-order oneswithm>1) are non-vanishing. Therefore the conditional probability distribution p
(x, t) of the process x(t) in equation (5) satisfies theKMdifferential equation (see appendix B).Wefind the
following expressions for the conditionalmoments of orders Î { }m 2, 4, 6 :
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where the superscript { }i denotes the ith derivative with respect to x. The termsA–E are related to drift and
diffusion functions and jumpproperties as (see appendix B)
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and the term d( ) comprises higher order-derivatives ofA,B, etc.We note that jump events induce terms of
order( )td in the conditionalmoments of even orders. In addition, jump propertiesλ(x) and sx

2 induce terms
of order( )td 2 in all conditionalmoments.

We check the validity of expansions in equation (7) aswell as of those for conditionalmoments of orders
Î { }m 1, 3, 5 (see appendix B) by reconstructing a jump-diffusion process with knowndrift and diffusion

coefficients as well as knownproperties of jumps from synthetic time series sampledwith time intervals td
spanning three orders ofmagnitude (for our examples, the fourth-order derivative ofA and thefifth-order
derivative ofB are vanishing. In addition, all derivatives of terms ¼C D, , , in equation (7) are zero).We note that
finite-N synthetic data from equation (5)may not have jumpnumber ln Nj for a constant jump rate.Wefind
again a very good agreement between estimated conditionalmoments and the respective theoretical predictions
(see figure 5), demonstrating the validity of our approach even for such systems.
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In order to derive the unknown functions in equation (6), we use the slope of ( )( )K x t, dj
4 for small td (see

figure 3) and estimate x lá ñ ( )x4 . Similar analysis can be done for ( )( )K x t, dj
6 , and in this waywe can estimate

x lá ñ ( )x6 .WithGaussian distributed jump amplitudes, it follows that x xá ñ = á ñ( )!
!

n n

n
n2 2

2
2

n and xá ñ =- 0n2 1 , for

= ¼n 1, 2, , where s x= á ñx
2 2 . Small td limit both ( )( )K x t, dj

4 and ( )( )K x t, dj
6 , and this leads to s lx ( )x3 4 and

s lx ( )x30 6 . Nowwe can estimate both jump amplitude sx
2 and jump rateλ(x) from ( )( )K x t, dj

4 and ( )( )K x t, dj
6 .

Once the jump characteristics are identified, ( )( )K x t, dj
2 identifies the diffusion function b and ( )( )K x t, dj

1

provides an estimate for the drift function a.
In closing this section, we note that for jump-diffusion processes and for small td the ratio between fourth-

and second-order conditionalmoments diverges as
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instead of approaching unity as observed for continuous diffusion processes (see section 2). The expansions
presented here (see appendix B) allow one to derive short-time expansion of theKMconditionalmoments for
jump-diffusion processes.

4. A criterion to distinguish diffusive and jumpy behavior in time series

With conditionalmoments ( )( )K x t, d•
4 and ( )( )K x t, d•

6 (the subscript• is a placeholder for either ‘d’ or ‘j’) and
using either relations 4 or relations 7, we nowderive a functionQ(x) that—for small time intervals td —allows
one to detect and to distinguish diffusive and jumpy behavior in time series

s
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For non-stationary processes, the conditionalmoments ( )K n
• , the diffusion function b, and the jump amplitudes

sx
2 are time-dependent.
For the exemplary time series of linear and nonlinear continuous stochastic processes generatedwith

equation (1),Q(x) exhibits a vanishing behavior with decreasing time interval td , where the slope depends on the

Figure 5.Conditionalmoments ( )( )K x t, dj
1 to ( )( )K x t, dj

6 estimated from exemplary time series of a discontinuous jump-diffusion

process (equation (5)) generatedwith = -( )a x x x3 and =( )b x x2, with jump rateλ=0.3 and size s =x 12 andwith a time interval
= -td 10 6. Time series consisted ofN=3×106 data points.We observed extreme events up to about±10σ. Error bars indicate the

standard error of themean (SEM) in each bin. Theoretically expected values are shown as red lines, and in the range±5σmore than
two-thirds of these values lie within the SEM interval of estimated conditionalmoments. Deviations in the tails are due to low
statistics.
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diffusion function b (see figure 6). Any deviation from »( ) ( )Q x b x td2 will rule out that the underlying process
is diffusive. For the exemplary time series of the jump-diffusion process generatedwith equation (5),Q(x)
converges to the jump amplitude sx

2.We note thatQ(x)will approach x xá ñ á ñ56 4 for jump amplitudes with a
non-Gaussian distribution.

5.Higher-order conditionalmoments of noisy empirical time series

Wenow consider the case that a time series x(t) is contaminatedwith somenoise η(t), which is not assimilated by
the stochastic process, leading to y(t)=x(t)+η(t). The noise η(t) is supposed to be uncorrelatedwith x(t), and
we assume that it hasfinite even-order statisticalmoments há ñn2 and vanishing odd-order ones. To reconstruct
the unknowndynamics x(t) from themeasurement y(t), it is essential to quantify η(t) and its influence on the
reconstruction of KMcoefficients. One can derive the following expressions for the first- and second-order
conditionalmoments of y(t) (the subscript ‘n’ denotes noisy) [23]:

g

g

= +

= +

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( )

K y t K x t y

K y t K x t y

, d , d ,

, d , d , 11
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1
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1

1

n
2

•
2

2

where g = á - ñ( ) ( )y x t y1 and g = á - ñ( ) ( ( ) )y x t y2
2 . In theweak noise limit há ñ( ( ) ( ) )( )t D x0.042 2 , we

find g há ñ( )y 22
2 [23].We note that the averaged statisticalmoments á - ñ( ( ) )x t y m do not depend on td .

These terms cause a strong overestimation of KMcoefficients = ( ) ( )( ) ( )M y t K y t, lim , dm
t t

m
d 0

1

d • for small td
and thus of the functions of interest in equations (1)and (5). Now, equations (4)and (7) state that there are
extra td -independent terms contributing to the conditionalmoments and these constants can be subsumed
with the different statisticalmoments of the noise. These constants can easily be estimated by dividing the even-
order conditionalmoments for y(t) by td (because this leads to a divergence of ( )( )K y t t, d dm

• ) [23], and
averaged higher-order statisticalmoments of η can then be derived from the knowledge of the lower-order ones.
Having estimated the averaged statisticalmoments of the noise allows one tofind conditionalmoments for the
time series x(t), andwith equation (10) one can checkwhether the underlying process has a continuous
(diffusive) or discontinuous (jumpy) trajectory.

6. Application to real-world time series

In this section, we demonstrate applicability of our criterion to distinguish diffusive and jumpy behavior
(equation (10)) by a data-driven inference of higher-order conditionalmoments from empirical observations.

Figure 6.Dependence ofQ(x0) on time interval td for exemplary time series of a linear (top) and nonlinear continuous stochastic
process (middle) and of a jump-diffusion process with jump amplitude s =x 12 (bottom).We chose x0 around themean of the
respective time series. Lines are for eye guidance only.
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Before going into details, we brieflymention that in the case of empirically derived time series that were sampled
with afixed sampling intervalΔ, equation (10) can be verified by scaling the time interval as a= Dtd , where
α=1, 2, 3,K(i.e. by considering data points aD ¼{ ( ) ( ) }x x0 , , only). This scaling changes the estimated drift
coefficient a toα a, the diffusion coefficient b to a b, and the estimated jump amplitude sx

2 to a sx
2 2, so thatQ

(x) scales as a ( )Q x2 . Checking the dependence ofQ(x) on a= Dtd then indicates a possibly diffusive or jumpy
behavior. For coarse scales (α? 1), we expectQ(x) to take on non-vanishing values, given that data discretized
at such scales appears as a succession of discontinuous jumps, even if the underlying trajectory is continuous. For
small scales ( a = ( )1 ) and diffusive processes,Q(x) approaches zero since the Brownian-type (Wiener-type)
behavior of the process produces a continuous trajectory [16]. Thus, the small-scale behavior ofQ(x) for

a = ( )1 is an indicator for rapid changes or jumps in a given time series. For our analysis, we expect that the
scaled sampling interval is lying in the interval a t< D <t pM . Here, tMdenotes theMarkov–Einstein time
scale, which is theminimum time interval over which the data can be approximated by aMarkov process; tMcan
be estimated from the investigated time series [17], for instance by directly checking the validity of the
Chapman–Kolmogorov equation [24]. Themeanwaiting time τp between jumps is defined as in section 3 and
can be estimated from the investigated time series as described in [16].

The data we analyze herewere part of previous studies [6, 25, 26]. Thefirst time series is ameasurement of
the spatial position of a dielectric bead (polystyrene, diameter∼1 μm,Bangs Laboratories Inc. USA) trapped in
optical tweezers. The setup consisted of aNd:YAG laser (power: 73 mW,wavelength: 1064 nm,Coherent, USA)
focused using awater immersion objective (OlympusCorp., Japan) in an optimal condition [27, 28]. A Si PIN
quadrant photodiode (S5980,Hamamatsu Photonics K. K., Japan)was positioned at the back focal plane (BFP)
of the condenser allowing an accurate detection of the displacements of the trapped bead through the BFP
detection scheme [29]. The voltage output of the quadrant photodiodewasfirst amplified and then digitized
using anA/Dcard (National Instruments Corp., USA). Trapping experiments were conducted under the
optimal conditionwith almost zero aberrations at a depth of∼10 μmin order to neglect the hydrodynamic
effect of the chamberwalls. Once a beadwas trapped, ten positional time series (see figure 7 top)were recorded
over a period of 3 s eachwith a sampling rate of 22 kHz (see [25] for further details; tM=Δ). A data-driven
estimation of thefirst- and second-order conditionalmoments confirmed the diffusive nature of the bead
dynamics [25].

The second time series is based on a 12 monthsmeasurement (with a sampling rate of 1 Hz) of global solar
irradiance on horizontal and inclined surfaces conducted by theUnited States’National Renewable Energy
Laboratory at Kalaeloa Airport (21.312°N, -158.084°W), Hawaii, USA, fromMarch 2010 untilMarch 2011
[30].Measurement were performed using 19 LI-200 pyranometers (LI-COR,USA). Two pyranometers were
tilted by 45° , while the remaining ones were horizontallymounted and scattered across an area of about
750×750 m2. The data is available fromhttp://nrel.gov/midc/oahu_archive/.We here investigate clear-sky
index data * =( ) ( )I t I t Ics, where I(t) and Ics are themeasured solar irradiance and its theoretical prediction
under clear-sky conditions at a given latitude and longitude, respectively (see [6, 26] for further details; tM= 4Δ;

Figure 7.Top: exemplary time series for the spatial position S of a bead trapped in optical tweezers. Bottom: section of the time series
for the clear-sky index I*. Night times have been removed.
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see figure 7 bottom). A jumpy stochastic behavior of solar irradiance represents amajor obstacle in the power
production as it influences not only the availability of energy, but also the stability of the entire power grid [6].
Moreover, it requires expensive technical solutions, such as fast reserves or storage systems in power supply to
overcome and compensate such fluctuations.

Infigure 8, we show for both time series the dependence ofQ(x) on the scaling coefficientα. For the time
series of the spatial position of a bead trapped in optical tweezers, we obtain a clear indication for a continuous
diffusion process, as expected. For the time series of the clear-sky index, our analyses indicate a discontinuous
trajectorywith jumps that can be traced back to on–offfluctuations of the cloud structure generated by
turbulence in the atmosphere [6]. In addition, it appears that for time-scales greater than 8 s (α=8) this time
series contains jumpswith amplitude sx  0.112 (for the chosen x0 around themean of data).

Before closing this section, we demonstrate that our approach to distinguish diffusive and jumpy behavior
can easily be extended to non-stationary time series, e.g. by employing kernel-based estimation techniques of
higher-order conditionalmoments [16, 31]. This allows for a time-resolved estimation of local characteristics of
a time series, such as drift and diffusion coefficients as well as the jump rate and jump amplitude. As an example,
we investigate the clear-sky index data (withα=1), which has strong nonlinear and non-stationary properties
on time-scales less than 104 s [26], and estimateQ(x(t)) in a time-resolved fashion (Gaussian kernel with
bandwidth 0.1). Its temporal evolution (see figure 9) provides strong evidence for an intermittent switching
between diffusive and jumpy behavior. A similar analysis for the spatial position of a bead trapped in optical
tweezers did not indicate a jumpy behavior (Q(x(t)) took on values in the order of 10−8 only; data not shown).

7. Concluding remarks

TheKMexpansion for the probability density of some stochastic process can be reduced to the Fokker–Planck
equation if higher-order (>2)KMcoefficients vanish. There are, however,many physical experiments that
indicate non-vanishing higher-order KMcoefficients [17, 32–39]. A priori, it is not evident if such observations
are due to thefiniteness of the respective sampling intervals or whether themeasured time series do not belong to
the class of continuous diffusion processes [14, 40] and contain discontinuous, abrupt changes or jumps. The
latter were shown recently to have pronounced contributions to higher-order KMcoefficients [16] and to
account for the non-Gaussian behavior of increment statistics of empirical time series [6]. Nevertheless, jumps
are notoriously difficult to identify since in practice, only discrete data are available from continuous-time
models. Herewe have demonstrated that afinite sampling interval not only influences thefirst- and second-
order KMcoefficients but also causes non-vanishing higher-order ones. For small time intervals td , the linear
relationship between the fourth- and squared second-order conditionalmoments enables one to judgewhether
the fourth-ordermoment tends to zero (any deviation from this will rule out that the underlying process is
diffusive), thus allowing to reduce theKMexpansion to the Fokker–Planck equation. Using information about
these higher-ordermoments, we derived a novel criterion (as a necessary condition) to checkwhether for a
given, even noisy time series the underlying process has a continuous or discontinuous trajectory. Our novel

Figure 8.Dependence ofQ(x0) on the scalingα for time series of the spatial position of a bead trapped in optical tweezers (black) and
for the clear-sky index (red).We chose x0 around the peak of the respective probability distribution functions of the time series. Lines
are for eye guidance only.
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approach to distinguish diffusive from jumpy stochastic behavior in time series enables the detection of jump
events in the data and provides a general avenue to better understand the dynamics of complex systems.
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AppendixA. Conditionalmoments of the Langevin equation for different orders of the
time interval

From equation (2), it is evident that only twoKMcoefficients, namely =( ) ( )( )M x t a x t, ,d
1 and

=( ) ( )( )M x t b x t, ,d
2 2 (the subscript ‘d’ denotes diffusion and = ( ) ( )( ) ( )M x t K x t, lim , dn

t t
n

d d 0
1

d d ) are non-
vanishing. Therefore, the conditional probability distribution of the process x(t) satisfies the truncatedKM
differential equation (Fokker–Planck equation) as
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with initial condition d¢ = - ¢( ∣ ) ( )p x t x t x x, , , and FP is given by

 å= -
¶
¶=

⎜ ⎟⎛
⎝

⎞
⎠!

( ) ( )( )

n x
M x t

1
, . A2

n

n
n

FP
1

2

d

The formal solution of equation (A1) reads

 d+ = -( ∣ ) { } ( ) ( )p x t x t t t x x, , d exp d . A3i iFP

The conditionalmoments ( )( )K x t, dn
d withfinite td can bewritten as
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where †
FP denotes the adjoint operator of FP and is given by
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Figure 9.Time-resolved estimates of º( ( )) ( )Q x t Q t (lower trace) for the time series of clear-sky index data (upper trace).
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An explicit expression of †
FP reads

 =
¶
¶

+
¶
¶

( )
!

( ) ( )† a x t
x

b x t
x

,
1

2
, . A6FP

2
2

2

For ( )( )K x t, dn
id , equation (A4) can bewritten as

  = + + + - =⎜ ⎟⎛
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⎠( ) ( ) ∣ ( )( ) † † †K x t t t x x, d 1 d

1

2
d . A7n

i i
n

x xd FP
2

FP FP i

Weconsider terms up to the order of thefirst non-vanishing power in( )td 2 for the conditionalmoments
( )( )K x t, dm

d with Î { }m 1, 2, 3, 4 and up to order( )td 3 formoments with Î { }m 5, 6 .Wefind the following
expressions (we omit the x- and t-dependence of a and b to enhance readability):
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where ¢a and ¢b denote thefirst and a″ and b″ the second derivatives with respect to state variable x. In the limit
td 0, the first terms on the rhs of thefirst two equationswill give the drift and diffusion coefficients, and for

finite td all conditionalmoments possess some correction terms.

Appendix B. Conditionalmoments of the jump-diffusion equation for different orders of
the time interval

TheKMdifferential equation is given by


¶

¶
=

( ∣ ) ( ∣ ) ( )p x t x t

t
p x t x t
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, , B1i i

KM i i

with initial condition d= -( ∣ ) ( )p x t x t x x, ,i i . The operator KM reads
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where = ( ) ( )( ) ( )M x t K x t, lim , dm
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m
j d 0

1

d j .With the formal solution
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of theKMdifferential equation (B1), the conditionalmoments can bewritten as
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Here †
KM is the adjoint operator of KM and has the following expression [14]:

 å=
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( ) ( )† ( )

m
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x

1
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m
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With its explicit expansion

ðB6Þ

in equation (B4), one canfind the following expressions for the conditionalmoments up to orderm=6 of the
jump-diffusion equation
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where the superscript { }i denotes the ith derivative with respect to x. The term d( ) comprises higher order-
derivatives ofA,B, etc.
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