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Abstract

We study the logarithmic conformal field theories in which conformal weights are continuous subset of real numbers. A
general relation between the correlators consisting of logarithmic fields and those consisting of ordinary conformal fields is
investigated. As an example the correlators of the Coulomb-gas model are explicitly studied. q 1998 Elsevier Science B.V.

1. Introduction

w xIt has been shown by Gurarie 1 , that conformal
Ž .field theories CFT whose correlation functions ex-

hibit logarithmic behaviour, can be consistently de-
fined and if in the OPE of two given local fields
which has at least two fields with the same confor-
mal dimension, one may find some operators with a
special property, known as logarithmic operators. As

w xdiscussed in 1 , these operators with the ordinary
operators form the basis of the Jordan cell for the
operators L .i

Ž .The logarithmic fields operators in CFT were
w xfirst studied by Gurarie in the csy2 model 1 .

After Gurarie, thes logarithms have been found in a

1 E-mail: Rahimi@netware2.ipm.ac.ir.

multitude of others models such as the WZNW-model
Ž . w x w xon GL 1,1 2 , the gravitationally dressed CFT 3 ,

w xc and non-minimal c models 2,4–6 , criticalp,1 p,q
w xdisorderd models 7,8 , and the WZNW-models at

w xlevel 0 9,10 . They play a role in the study of
w xcritical polymers and percolation 11,12 , 2D-MHD

w x w xturbulence 13–15 , 2D-turbulence 16,17 and quan-
w xtum Hall states 18–20 . They are also important for

studying the problem of recoil in the string theory
w xand D-branes 9,21–24 , as well as target space

w xsymmetries in string theory 9 . The representation
theory of the Virasoro algebra for LCFT was devel-

w xoped in 25 . The origin of the LCFT has been
w xdiscussed in 26–28 . The modular invariant partition

functions for c s1 and the fusion rules of logarith-eff
Ž .mic conformal field theories LCFT are considered

w x w xin 4 , see also 29 about consequences for Zamolod-
chikov’s C-theorem. Structure of the LCFT in D-di-

w xmensions has been discussed in 30 .
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The basic properties of logarithmic operators are
that, they form a part of the basis of the Jordan cell
for L ’s and in the correlator of such fields there is ai

w xlogarithmic singularity 1 . It has been shown that in
rational minimal models such a situation, i.e. two

w xfields with the same dimensions, doesn’t occur 14 .
w xIn a previous paper 27 assuming conformal in-

variance we have explicitly calculated two- and
three-point functions for the case of more than one
logarithmic field in a block, and more than one set of
logarithmic fields for the case where conformal
weights belong to a discrete set. Regarding logarith-
mic fields formally as derivations of ordinary fields
with respect to their conformal dimension, we have
calculated n-point functions containing logarithmic

Žfields in terms of those of ordinary fields see also
w x31 , about the role of such derivative in the OPE

.coefficients of LCFT .
We have done these when conformal weights

w xbelong to a discrete set. In 28 , there is an attempt to
understand the meaning of derivation CFT with re-
spect to conformal weights. Here, we want to con-
sider logarithmic conformal field theories with con-
tinuous weights. The simplest example of such theo-
ries is the free field theory. The structure of this
article is as follows. In Section 2 we study conformal
theories, in which conformal weights belong to a
continuous subset of real numbers, and calculate the
correlators of these theories. Specifically, we show
that one can calculate the two-point functions of
logarithmic fields in terms of those of ordinary fields
by derivation. This is not possible in the case of
discrete weights. In Section 3 we consider the
Coulomb-gas model as an example.

2. Correlators of a logarithmic CFT with continu-
ous weights

w xIn 27 , it was shown that if there are quasi-primary
fields in a conformal field theory, there arises loga-
rithmic terms in the correlators of the theory. By
quasi-primary fields, it is meant a family of operators
satisfying

Ž j.L ,F zŽ .n

sz nq1E F Ž j. z q nq1 z nDF Ž j. zŽ . Ž . Ž .z

q nq1 z nDF Ž jy1. z , 1Ž . Ž . Ž .

where D is the conformal weight of the family.
Among the fields F Ž j., the field F Ž0. is primary. It
was shown that one can interpret the fields F Ž j.,
formally, as the j-th derivative of a field with respect
to the conformal weight:

1 d j
Ž j. Ž0.F z s F z , 2Ž . Ž . Ž .jj! d D

and use this to calculate the correlators containing
F Ž j. in terms of those containing F Ž0. only. The

Ž .transformation relation 1 , and the symmetry of the
theory under the transformations generated by L"1

and L , were also exploited to obtain two-point0

functions for the case where conformal weights be-
long to a discrete set. There were two features in
two-point functions. First, for two families F and1

F , consisting of n q1 and n q1 members, re-2 1 2

spectively, it was shown that the correlator
² Ž i. Ž j.: Ž . ŽF F is zero unless iq jGmax n ,n . It is1 2 1 2

understood that the conformal weights of these two
families are equal. Otherwise, the above correlators

.are zero. Another point was that one could not use
the derivation process with respect to the conformal
weights to obtain the two-point functions of these

² Ž0. Ž0.:families from F F , since the correlators con-1 2

tain a multiplicative term d , which can not beD , D1 2

differentiated with respect to the conformal weight.
Now, suppose that the set of conformal weights of

the theory is a continuous subset of the real numbers.
First, reconsider the arguments resulted to the fact

² Ž i. Ž j.:that F F is equal to zero for i q j G1 2
Ž .max n ,n . These came from the symmetry of the1 2

theory under the action of L and L . Symmetry"1 0

under the action of L results iny1

² Ž i. Ž j. : ² Ž i. Ž j. :F z F w s F zyw F 0Ž . Ž . Ž . Ž .1 2 1 2

s : Ai j zyw . 3Ž . Ž .
We also have

Ž i. Ž j.² :L ,F z F 0Ž . Ž .0 1 2

s zEqD qD Ai j z qAiy1, j zŽ . Ž . Ž .1 2

qAi , jy1 z s0, 4Ž . Ž .
and

Ž i. Ž j.² :L ,F z F 0Ž . Ž .1 1 2

s z 2Eq2 zD Ai j z q2 zAiy1, j z s0. 5Ž . Ž . Ž .Ž .1
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These show that

D yD Ai j z qAiy1, j z yAi , jy1 z s0.Ž . Ž . Ž . Ž .1 2

6Ž .

If D /D , it is easily seen, through a recursive1 2

calculation, that Ai j’s are all equal to zero. This
shows that the support of these correlators, as distri-
bution of D and D , is D yD s0. So, one can1 2 1 2

use the ansatz

Ai j z s Ai j z d Žk . D yD . 7Ž . Ž . Ž . Ž .Ý k 1 2
kG0

Ž . Žkq1.Ž . ŽInserting this in 6 , and using xd x sy kq
. Žk .Ž .1 d x , it is seen that

i j iy1, j i , jy1y kq1 A z qA z yA zŽ . Ž . Ž . Ž .Ý kq1 k k
kG0

d Žk . D yD s0, 8Ž . Ž .1 2

or

kq1 Ai j z sAiy1, j z yAi , jy1 z , kG0.Ž . Ž . Ž . Ž .kq1 k k

9Ž .

This equation is readily solved:

k1 ki j iykql , jylA z s A z , 10Ž . Ž . Ž .Ž .Ýk 0lk! ls0

where Ai j’s remain arbitrary. Also note that Ai j’s0 k
Ž .with a negative index are zero. We now put 7 in

Ž .4 . This gives

zEqD qD Ai j z qAiy1, j z qAi , jy1 z s0,Ž . Ž . Ž . Ž .1 2 k k k

11Ž .

Ž .Using 10 , it is readily seen that it is sufficient to
Ž .write 11 only for ks0. This gives

zEqD qD Ai j z qAiy1, j z qAi , jy1 z s0.Ž . Ž . Ž . Ž .1 2 0 0 0

12Ž .

Putting the ansatz

iqj
mi j yŽD qD . i j1 2A z sz a ln z 13Ž . Ž . Ž .Ý0 m

ms0

Ž .in 12 , one arrives at

mq1 a i j qa iy1, j qa i , jy1 s0, 14Ž . Ž .mq 1 m m

the solution to which is

m my1Ž . mi j iymqs , jysa s a . 15Ž .Ž .Ým 0sm! ss0

From this

miqj y1Ž .mi j yŽD qD .1 2A z sz ln zŽ . Ž .Ý0 m!ms0

m
m iymqs , jys= a , 16Ž .Ž .Ý 0s

ss0

and

miqjykk1 y1Ž .mkli jA z s y1 ln zŽ . Ž . Ž .Ž .Ý Ýk lk! m!ls0 ms0

m
m iykymqlqs , jylys yŽD qD .1 2= a z .Ž .Ý 0s

ss0

17Ž .

So we have

Ai j z szyŽ D1qD 2 . d Žk . D yDŽ . Ž .Ý 1 2
kG0

miqjykk1 y1Ž .mkl
= y1 ln zŽ . Ž .Ž .Ý Ýlk! m!ls0 ms0

m
m iykymqlqs , jylys= a , 18Ž .Ž .Ý 0s

ss0

or

qqrqs
y1Ž .

i j yŽD qD .1 2A z szŽ . Ý
p!q!r !s!p ,q ,r , sG0

rqsiypyr , jyqys Ž pqq .=a ln z d D yD ,Ž . Ž .1 2

19Ž .

where

a i j :sa i j . 20Ž .0

These constants, defined for nonnegative values of i
and j, are arbitrary and not determined from the
conformal invariance only.

Ž .Now differentiate 19 formally with respect to
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D . In this process, a i j’s are also assumed to be1

functions of D and D . This leads to1 2

E Ai j zŽ .
ED1

qqrqs
y1Ž .

yŽ D qD .1 2sz Ý
p!q!r !s!p ,q ,r , s

Ea iypyr , jyqys
rqs Ž pqq .= ln z d D yDŽ . Ž .1 2½ ED1

rqsiypyr , jyqys Ž pqqq1.qa ln z d D yDŽ . Ž .1 2

rqsq1 Ž pqq .y ln z d D yD , 21Ž . Ž . Ž .51 2

or

E Ai j zŽ .
ED1

qqrqs
y1Ž .

yŽ D qD .1 2sz Ý
p!q!r !s!p ,q ,r , s

rqs Ž pqq .= ln z d D yDŽ . Ž .1 2

iypyr , jyqysEa
iypyr , jyqys= pqr a q .Ž .

ED1

22Ž .

Comparing this with Aiq1, j, it is easily seen that

1 E Ai j
iq1, jA s , 23Ž .

iq1 ED1

provided

Ea iypyr , jyqys
iq1ypyr , jyqyss iq1ypyr a .Ž .

ED1

24Ž .

Ž .Note, however, that the left hand side of 24 is just
a formal differentiation. That is, the functional de-
pendence of a i j’s on D and D is not known, and1 2

their derivative is just another constant. Repeating
this procedure for D , we finally arrive at2

1 E i E j
i j 00a s a , 25Ž .i ji! j! ED ED1 2

and

1 E i E j
i j 00A s A . 26Ž .i ji! j! ED ED1 2

These relations mean that one can start from A00,
which is simply

A00 z szyŽ D1qD 2 .d D yD a 00 , 27Ž . Ž . Ž .1 2

and differentiate it with respect to D and D , to1 2

obtain Ai j. In each differentiation, some new con-
stants appear, which are denoted by a i j’s but with
higher indices. Note also that the definition is self-
consistent. So that this formal differentiation process
is well-defined.

One can use this two-point functions to calculate
the one-point functions of the theory. We simply put
F Ž0.s1. So, D s0,2 2

² Ž0. : 0F z sb d D , 28Ž . Ž . Ž .

and

i nykb
Ž i. k² :F z s d D , 29Ž . Ž . Ž .Ý

k!ks0

where

1 d ib 0
ib :s . 30Ž .ii! d D

The more than two-point function are calculated
w xexactly the same as in 27 .

3. The Coulomb-gas model as an example of
LCFT

As an explicit example of the general formulation
of the previous section, consider the Coulomb-gas

w xmodel characterized by the action 26

1
2 mn'Ss d x g yg E F E F q iQRF ,Ž .Ž .H m n4p

31Ž .
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where F is a real scalar field, Q is the charge of the
theory, R is the scalar curvature of the surface and
the surface itself is of a spherical topology, and is
everywhere flat except at a single point.

Defining the stress tensor as

4p dS
mnT :sy , 32Ž .

d g'g mn

it is readily seen that
1mn m n mn a bT sy E F E F q g g E F E FŽ . Ž . Ž . Ž .a b2

;mn mn 2yiQ f yg = F , 33Ž .
and

2 2T z :sT z sy Ef y iQE f , 34Ž . Ž . Ž . Ž .z z

where in the last relation the equation of motion has
been used to write

F z , z sf z qf z . 35Ž . Ž . Ž . Ž .
It is well known that this theory is conformal, with
the central charge

cs1y6Q2 . 36Ž .
There are, however, some features which need more
care in our later calculations. First, this theory can
not be normalized so that the expectation value of
the unit operator become unity. In fact, using eS as
the integration measure, it is seen that

² :1 Ad Q 37Ž . Ž .
one can, at most, normalize this so that

² :1 sd Q . 38Ž . Ž .
Second, f has a z-independent part, which we
denote it by f . The expectation value of f is not0 0

Ž .zero. In fact, from the action 31 ,

1
² : ² :f s f s df f exp 2 iQf ,Ž .H0 0 0 0N QŽ .

39Ž .
Ž .where N is determined from 38 and

1
² :1 s df exp 2 iQf . 40Ž . Ž .H 0 0N

Ž .This shows that N 0 sp , and
X1 N 0Ž .

X² :f s d Q q d Q . 41Ž . Ž . Ž .0 2 i N 0Ž .

More generally

1 1 d
² : ² :f f s f N 1Ž . Ž .0 ž /N 2 i dQ

1 1 d
s f Nd Q . 42Ž . Ž .ž /N 2 i dQ

Third, the normal ordering procedure is defined as
following. One can write

f z sf qf z qf z , 43Ž . Ž . Ž . Ž .0 q y

² < Ž . Ž . < :where 0 f z s0, f z 0 s0, andy q

w xf ,f s0. 44Ž .0 "

The normal ordering is so that one puts all ‘-’ parts
at the left of all ‘q’ parts. It is then seen that

² : ² :w x: f f : s f f . 45Ž . Ž .0

Here, the dependence of f on f in the left hand side
may be quite complicated; even f can depend on the
values of f at different points. In the right hand

Ž .side, however, one simply changes f z ™f .0

Now consider the two-point function. From the
equation of motion, we have

1² : ² :f z f w sy ln zyw 1 qb ; 46Ž . Ž . Ž . Ž .2

we also have

1 d2
2² : ² ::f z f w : s f sy Nd Q .Ž . Ž . Ž .0 24N dQ

47Ž .

Ž .Note that there is an arbitrary term in 46 , due to the
ultraviolet divergence of the theory. One can use this
arbitrariness, combined with the arbitrariness in
Ž .N Q , to redefine the theory as

1
f z f w s :y ln zyw q :f z f w :,Ž . Ž . Ž . Ž . Ž .2

48Ž .

and

1 d
² :f f :s f d Q ; 49Ž . Ž . Ž .0 ž /2 i dQ
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Ž .these relations, combined with 45 are sufficient to
obtain all of the correlators. One can, in addition, use
Ž . Ž .34 in normal ordered form to arrive at

E f iQr2w
T z f w s y q r.t., 50Ž . Ž . Ž .2zyw zywŽ .

and

E T 2T w 1y6Q2 r2Ž . Ž .w
T z T w s y q .Ž . Ž . 2 4zyw zyw zywŽ . Ž .

51Ž .

Ž .Eq. 50 can be written in the form

iQ
nq1 nL ,f z sz Efy nq1 z . 52Ž . Ž . Ž .n 2

This shows that the operators f and 1 are a pair of
Žlogarithmic operators with Ds0 in the sense of

Ž ..1 . One can easily show that

E :e iaf Žw . :wi af Žw .T z :e : sŽ .
zyw

a aq2Q r4Ž .
i af Žw .y :e :q r.t.,2zywŽ .

53Ž .

which shows that :e i af : is a primary field with

a aq2QŽ .
D s . 54Ž .a 4

To this field, however, there corresponds a quasi
Ž w x.conformal family pre-logarithmic operators 26 ,

whose members are obtained by explicit differentia-
Žtion with respect to a a is not the conformal

.weight but is a function of it :

dnŽn. n iaf i afW : sf e : s yi :e :. 55Ž . Ž .a nda

To calculate the correlators of W ’s, it is sufficient
² Ž0. Ž0.:to calculate W PPP W .a a1 k

Ž .One has, using Wick’s theorem and 48 ,

k

Ž . Ž .k i a f Ž z . 1r2 a a ln z yz i a f zj j i j i j j jÝ ÝP :e : se :e :.js1 1F i- jFk js1

56Ž .

Ž . Ž .From this using 45 and 48 , we have

² k Ž0. :P W zŽ .js1 a jj

a ai j k
d

2 1r2 a jÝs P z yz e d QŽ . Ž .dQ1F i- j F k i j js1

a ai j k
2 1s P z yz d Qq a .Ž . Ý1F i- j F k i j j2ž /

js1

57Ž .
Obviously, differentiating with respect to any a ,i
leads to logarithmic terms for the correlators consist-
ing of logarithmic fields W Žn.. The power of loga-a

rithmic terms is equal to the sum of superscripts of
the fields W Žn..a
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