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ABSTRACT
The excursion set approach is a framework for estimating how the number density of nonlinear
structures in the cosmic web depends on the expansion history of the universe and the nature of
gravity. A key part of the approach is the estimation of the first crossing distribution of a suitably
chosen barrier by random walks having correlated steps: The shape of the barrier is determined by
the physics of nonlinear collapse, and the correlations between steps by the nature of the initial
density fluctuation field. We describe analytic and numerical methods for calculating such first up-
crossing distributions. While the exact solution can be written formally as an infinite series, we
show how to approximate it efficiently using the Stratonovich approximation. We demonstrate its
accuracy using Monte-Carlo realizations of the walks, which we generate using a novel Cholesky-
decomposition based algorithm, which is significantly faster than the algorithm that is currently in
the literature.
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1 INTRODUCTION

Non-linear structure formation is most often studied using
N-body simulations of the evolution from a given initial con-
dition to the late time universe. These suggest that the late-
time universe is well-approximated by a collection of nonlin-
ear gravitationally bound objects, called dark matter halos.
Galaxies form in such halos, and their properties are tightly
correlated with the masses of the halos which surround them
Mo et al. (2010). For this reason, the abundance and spatial
distribution of dark matter halos plays a crucial role in the
interpretation of data from galaxy surveys Cooray & Sheth
(2002).

In a seminal paper, Press & Schechter (1974) argued
that it should be possible to estimate the late-time abun-
dance of nonlinear gravitationally bound structures from
knowledge of the initial fluctuations of the density field. The
Excursion Set approach Bond et al. (1991) casts the Press-
Schechter argument in terms of a random walk, barrier-
crossing problem. In this approach, one associates a walk
with each position in the initial field: the walk height repre-
sents the smoothed initial overdensity field at that position,
and the number of steps is related to the smoothing scale.
The height of the barrier to be crossed is determined by
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the physics of gravitational collapse Sheth et al. (2001), so
the first crossing distribution of the barrier is related to the
abundance of nonlinear objects.

The first up-crossing distribution depends on the cor-
relation properties of the walks, so it is not surprising that
early works studied special cases which were most amenable
to an analytic treatment. Although it was not appreciated
at the time, the original Press-Schechter analysis has since
been shown to correspond to walks in which the heights (in
initial density versus smoothing scale plane) are maximally
correlated – the height on one smoothing scale determines
the height on all the others Paranjape et al. (2012). In con-
trast, Bond et al. focused on the case in which the steps
have memory for one step so the walk heights are a Markov
process. The general problem which is most directly related
to the physics involves walks which lie in between these two
limits: the steps are correlated, but this correlation can be
weak. Models in which the walk steps – rather than heights
– are Markov, are introduced and studied in Musso & Sheth
(2014c).

Except for the limiting cases of completely correlated
or Markov heights, there are no exact analytic expressions
for the first crossing distribution. This is not entirely true:
the distribution can be written as a formal expansion in an
infinite series Verechtchaguina et al. (2006); Musso & Sheth
(2014b), but summing this series is difficult. One of our
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Figure 1. Ensembles of Markov (left) and non-Markov (right) trajectories, which are associated with sharp-k and Top-hat smoothing

filters, respectively, shown as a function of walk height variance S defined in the main text. All walks began at S0 = 0.01. In each panel,
one of the walks is highlighted to show where it upcrosses a barrier of height δc = 1.686 for the first time, first down crosses and where

it upcrosses the barrier for a second time. About 40% of the walks have a first up-crossing in the range of S we show; 10% also have a
second up-crossing in this range. Upper panels show the first up-crossing distribution estimated using 106 trajectories, generated using

the Cholesky decomposition algorithm we describe in Section 2.

goals is to provide a framework for accomplishing this
Verechtchaguina et al. (2006); Tabar et al. (2018). Section 3
describes what we call the Stratonovich approximation to
the first crossing distribution. To test it, we developed a fast
numerical algorithm for generating non-Markov trajectories
which have the correct ensemble properties. We call this the
Cholesky decomposition; it is the subject of Section 2. A
final section summarizes our results, and an appendix pro-
vides additional technical details.

2 THE CHOLESKY METHOD FOR
GENERATING EXACT NON-MARKOV
TRAJECTORIES

This section describes an efficient method for generating an
ensemble of walks with the correct ensemble properties.

We will use δR (x) to denote the linearly evolved over-
density at position x smoothed on scale R. In the ΛCDM
model, S ≡ 〈δ2

R〉 is a monotonic function of the smoothing
scale R. In the Excursion Set formalism which we describe
below, it is usual to work with S rather than R Bond et al.
(1991). The value of the smoothed density contrast δS , when
plotted as a function of S, traces out a trajectory which re-
sembles the evolution of a stochastic process. There is a dif-
ferent trajectory associated with each position x in the Uni-
verse. The properties of the ensemble defined by choosing a
random set of positions x will depend on the correlations of
the underlying field, and on the nature of the smoothing fil-
ter. To see this explicitly, note that the correlation between
heights on two scales is given by

〈δiδ j 〉 ≡ Ci j =

∫
dk
k

k3P(k)
2π2 W̃ (kRi )W̃ (kRj ), (1)

where P(k) is the power spectrum, W̃ is the Fourier trans-
form of the window function, and Cii ≡ Si is the variance of
δ when smoothed on scale Ri .

If the joint distribution of walk heights on all steps

is multivariate Gaussian, then all the information about
correlations is encoded in the quadratic form

∑
i j δi C−1

i j δ j .

In practice, how should one use this quadratic form? The
Cholesky method which we describe in more detail in the
Appendix, can be thought of as writing

δn = 〈δn |δn−1, . . . , δ1〉 + σn |n−1, ...,1 ξn (2)

with 〈δn |δn−1, . . . , δ1〉 and σn |n−1, ...,1 defined in the Ap-
pendix. For Gaussian statistics, ξn is a zero-mean unit
variance Gaussian random number, the first term on the
right hand side is a linear function of the previous heights
(δ1, . . . , δn−1), and the second term depends on the scales
S1, . . . ,Sn , but not on the heights themselves. This results in
a substantial speed-up, because each δn is only determined
by steps previous to it. Note that, other than ensuring that
upcrossing scales be well resolved, there is no requirement
that steps be evenly spaced in S.

Figure 1 shows two ensembles of walks, generated as-
suming Gaussian statistics and the same P(k) ∝ k−2, but
for different smoothing windows. In the panel on the left,
the smoothing window is sharp in k-space so C(S,S′) =
min(S,S′); this results in walks that are Markovian and
jagged. In the right-hand panel the smoothing window is
sharp in real-space (i.e. W̃ (x) = 3 j1(x)/x), so the walks are
non-Markovian and smoother.

A horizontal line, the same in each panel, shows a ‘bar-
rier’ of height δc ≈ 2. The height (and S dependence) of
this barrier is determined by the physics of gravitational
instability. In the excursion set approach, δc is a ‘collapse
barrier’ which a trajectory must cross if it is to represent
a nonlinear object. Although each trajectory may cross the
barrier δc many times, the approach asserts that the first
crossing is special: the first crossing distribution is related
to the average number density of nonlinear objects. The his-
tograms in the upper panels show the corresponding first
crossing distributions estimated directly from the ensemble
of trajectories. Estimates based on the traditional algorithm
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for generating the walks (e.g. Bond et al. (1991)) are very
similar, so we have not shown them here.

Our algorithm is more than an order of magnitude faster
than previous algorithms (e.g. Bond et al. (1991)). However,
it is much slower than the approximate back-substitution al-
gorithm of Musso & Sheth (2014a). That said, the compar-
ison is not completely fair. The back-substitution method
provides a direct estimate of the first crossing distribution –
not a numerical one that converges to the true distribution
in the limit of many Monte-Carlo realizations of the walks.
On the other hand, the trajectories which our Cholesky de-
composition provides can be used directly to study a num-
ber of other issues, such as the bias associated with requir-
ing trajectories to satisfy a number of other constraints. In
contrast, the back-substitution algorithm must be re-run to
study each new constraint.

In the next section, we use the ensemble of walks re-
turned by our Cholesky algorithm to test analytic estimates
of the first crossing distribution.

3 ANALYTIC APPROXIMATION FOR THE
FIRST CROSSING DISTRIBUTION

We now describe an analytic estimate of the first upcrossing
distribution associated with the non-Markovian walks which
were the subject of the previous section. The analysis follows
Verechtchaguina et al. (2006), Musso & Sheth (2014b) and
Tabar et al. (2018) closely.

3.1 The exact counting method

In what follows, it is useful to define the slope

η(S) ≡
∂δ

∂S
, (3)

where η(S) is a random variate which we will sometimes call
the ‘slope’, whose correlation function Ξ(S,S′) ≡ 〈η(S)η(S′)〉
depends on the power spectrum P(k) of the underlying field
and the shape of the filter function. (To get Ξ(S,S′), differ-
entiate equation 1 with respect to Ri and Rj , and multiply
by dRi/dSi and dRj/dSj .) If the underlying field is Gaussian,
then η(S) is a Gaussian variate with zero mean and covari-
ance Ξ(S,S′). For a sharp k-space smoothing filter, Ξ(S,S′) is
a Dirac delta function for any P(k), from which the Markov
nature of trajectories associated with sharp k-space smooth-
ing follows. But for other smoothing filters the trajectories
are non-Markovian: Ξ(S,S′) depends on both the smoothing
filter and the power spectrum.

Our goal is to write down an expression for
f (δc ,S |δ0, η0,S0), the fraction of all trajectories which start
from height δ0 with slope η0 at the starting scale S0 and
upcross the barrier δc for the first time at S > S0. Hereafter,
for notational simplicity, we will drop the δc and the initial
conditions (i.e. we simply write f (S)).

Let n1(δc ,S |δ0, η0,S0) ≡ n1(S) denote the rate with
which walks upcross on scale S regardless of whether they
had done so previously (at smaller S) Jafari et al. (2006) .
We call n1 a rate rather than a density function, because it
includes trajectories which had an up-crossing at variance
< S, so the integral of n1(S) over all S is not normalized to
unity. Since f (S) denotes the fraction of first up-crossings at

S, we should subtract from n1(S) all the walks that had pre-
vious up-crossings. Similarly, if np (δc ,Sp ; ...; δc ,S1 |δ0, η0,S0)
denotes the rate that a trajectory up-crosses the barrier in
the following p intervals of (S1,S1+ dS), ..., (Sp ,Sp + dS), then

np (δc ,Sp ; ...; δc ,S1 |δ0, η0,S0) (4)

=

∫ ∞

0
dηpηp ...

∫ ∞

0
dη1η1 p(δc , ηp ,Sp ; ...; δc , η1,S1 |δ0, η0,S0),

and the first up-crossing distribution satisfies:

f (S |δ0, η0,S0) =
∞∑
p=0

(−1)p

p!

∫ S

0
dS1 . . .

∫ S

0
dSp

× np+1(S,Sp , . . . ,S1 |δ0, η0,S0), (5)

where the p! factor accounts for permutations of S1, . . . ,Sp
Verechtchaguina et al. (2006); Tabar et al. (2018). Integrat-
ing over the distribution of (δ0, η0) yields the expression
for the unconditional f (S) that is given in Appendix A of
Musso & Sheth (2014b), who also show how to treat barri-
ers which have nontrivial S dependence. Equation (5) is the
exact expansion of the first crossing distribution for any con-
tinuous, differentiable non-Markovian process with Gaussian
or non-Gaussian multivariate distributions.

3.2 Expression in terms of cumulants

Although equation (5) is exact, the problem is to sum it. In
its current form, keeping only the first term, n1(S) is a good
approximation at S � δ2

c , but ever higher-order terms are
needed at larger S. As a result, naive truncation of the series
leads to an unnormalized distribution which may not even
be positive definite.

To proceed, we first use the cumulant functions

g1(S) = n1(S), g2(S,S1) = n2(S,S1) − n1(S)n1(S1), etc.,

instead of the rate functions. Then, Verechtchaguina et al.
(2006) show that

f (> S) = 1 − e−ψ (S) , so f (S) = ψ′(S) e−ψ (S) , (6)

where

ψ(S) ≡
∞∑
p=1

(−1)p+1

p!

∫ S

0
dS1 . . .

∫ S

0
dSp gp (Sp , . . . ,S1), (7)

ψ′ denotes a derivative with respect to S, and our notation
hides the fact that all these expressions are conditioned on
(δ0, η0) on the scale S0.

3.3 Hertz and Stratonovich approximations

So far, we have just repackaged the series; summing it is
still non-trivial. However, the repackaging is useful, since
it helps see how one should approximate ψ. For instance,
only approximations which have ψ′(S) > 0 are acceptable.
Moreover, two approximations have been developed to deal
with such infinite series.

The simplest is the Hertz approximation Hertz (1909),
which follows from assuming np+1(S,Sp , . . . ,S1 |δ0, η0,S0) =
n1(S) . . . n1(S1). Then all gp = 0 except g1, which equals
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n1(< S), so

ψHertz(S) =
∫ S

0
dS1 n1(S1) = n1(< S) (8)

fHertz(S) = n1(S) e−n1 (<S) . (9)

While this approximation has appeared before Bond et al.
(1991); Musso & Sheth (2014b), there has been no discus-
sion of how to do better.

The structure of equation (7) suggests that one should
do better if one computes the first two terms exactly.
This leads to the Stratonovich approximation Stratonovich
(1967), where the first two terms are computed exactly, and
all higher terms are approximated using these two, taking
care to guarantee ψ′(S) > 0. In this approximation, account-
ing for the fact that different upcrossings cannot overlap –
they must be separated from one another – yields

gp (Sp , . . . ,S1) ≈ (−1)p−1(p − 1)! n1(Sp ) . . . n1(S1) (10)

×
{
R(S1,S2)R(S1,S3) . . . R(S1,Sp )

}
sym,

where

R(Si ,Sj ) ≡ 1 −
n2(Si ,Sj )

n1(Si )n1(Sj )
. (11)

The series which results from inserting equation (10) in
equation (7) can be summed explicitly to yield

ψStr(S) = −
∫ S

0
dS′ n1(S′)

ln[1 − n1(< S,S′)]
n1(< S,S′)

, (12)

where

n1(< S,S′) ≡
∫ S

0
dS̃ R(S′, S̃)n1(S̃). (13)

Verechtchaguina et al. (2006); Tabar et al. (2018). This ex-
pression for ψ has replaced the infinite sum by a single term
which involves multiple integrals, which we evaluate numer-
ically. Equation (12) is our main new result.

Both the Hertz and Stratonovich approximations, which
are based on approximating the higher order terms by lower
order ones, yield positive definite distributions which are
normalized to unity. Since they approximate all the cumu-
lants rather than truncating the cumulant series, they are
sometimes referred to as ‘decoupling’ approximations. Fig-
ure 2 compares both with the cumulative first crossing dis-
tribution f (< S) measured directly after generating an en-
semble of non-Markovian random walks (for which we as-
sumed Tophat smoothing of a Gaussian random field having
power spectrum P(k) ∝ k−2). Rather than showing f (< S)
as a function of S, we show f (> ν) where ν ≡ δ2

c/S (recall
that δc is the barrier). Blue curves show previous approx-
imations: the Markov (dot-dashed), completely correlated
(long dashed) and up-crossing approximation (dotted) which
keeps only the first term of equation (5). (Note that neither
dashed nor the dotted approximations yield distributions
which are normalized to unity.) Red curves show that the
Hertz approximation (red dotted) is clearly more accurate
than the previous approximations, and our Stratonovich ap-
proximation (error bars) is even more accurate. (We show
this approximation using error bars because we evaluated
the integrals involved using Monte-Carlo methods – not to
be confused with the Monte-Carlo method for generating the
ensemble of trajectories which we describe in the Appendix.)

Figure 2. Cumulative first upcrossing distribution versus the

height parameter ν ≡ δ2
c/S for tophat smoothed walks when the

power spectrum is P(k ) ∝ k−2. Solid line uses the traditional

method to generate an ensemble of walks, and the dashed line
uses our new Cholesky method. Solid line with triangle symbols is

the solution for Markov walks; solid line with filled circle symbols

shows half this value, which corresponds to walks with completely
correlated steps, and long dashed - short dashed curve shows the

up-crossing approximation in which results from truncating the

formal expansion (equation 5) so that the corrections due to pre-
vious crossings are ignored. Dashed-dot curve shows the Hertz

approximation (equation 9), and the dotted line with gray band

(as an error) shows the Stratonovich approximation (equation 12
in equation 6).

4 DISCUSSION

We described two studies of the first crossing distribution
associated with non-Markovian trajectories. One was a fast
method for generating ensembles of walks with the correct
statistical correlations between steps – what we called the
Cholesky-based algorithm (Section 2 and Appendix A) –
from which the first crossing distribution can be estimated
directly (Figure 1). The other was an analytic approxima-
tion for this distribution – the Stratonovich approximation
(equation 12). Whereas the analytic approach is general,
our implementation of the Cholesky decomposition assumed
Gaussian statistics, although the general philosophy which
leads to equation (2) is more general. The Stratonovich ap-
proximation provides a substantially better description of
the first crossing distribution than other analytic estimates
in the literature (Figure 2).

Non-Markovian Gaussian walks such as those studied
here have been used to model the number density of nonlin-
ear gravitationally bound objects in cosmology. The abun-
dance and spatial distribution of these objects – known
as dark matter halos – constrain the expansion history
of the universe, and the nature of dark matter and grav-
ity. A simple extension of this approach also allows one
to model voids – the most underdense regions in the Uni-
verse Sheth & Van De Weygaert (2004). These provide com-
plimentary constraints on cosmological models. The increase
in speed and accuracy which our methods provide will fa-
cilitate such studies. The next step in this program is to
integrate the results here into the Excursion Set Peaks anal-
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ysis of Paranjape et al. (2013) using the simple weighting
scheme described in Castorina et al. (2018).

Finally, as Tabar et al. (2018) discuss in more detail,
the methods described here impact studies of stochastic pro-
cesses in many fields other than cosmology. Whereas cosmol-
ogy is most interested in the small S limit, since this is the
limit which corresponds to massive halos, the large S limit
is often of more interest in other fields.
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APPENDIX A: GENERATING
NON-MARKOVIAN WALKS USING THE
CHOLESKY DECOMPOSITION

To compute the non-Markovian first up-crossing distribu-
tion, we must generate trajectories with the correct ensem-
ble properties. Here, we describe how to do so efficiently.

Equation (1) of the main text defined Ci j ≡ 〈δiδ j 〉, the
covariance between the walk heights on scales Si and Sj . The
matrix C is real, symmetric, and positive-definite, so it has
a unique decomposition, C = LLT , in which L is a lower tri-
angular matrix. This decomposition is known as Cholesky’s
decomposition. We use L to generate the ensemble of tra-
jectories as follows.

First, consider a vector ξ, which is Gaussian white noise

with zero mean and unit variance (i.e. 〈ξmξn〉 = δmn). If we
generate our desired trajectories as

δi =
∑
j

Li j ξ j , (A1)

then the δi will have correlations between heights given by

〈δiδ j 〉 =
∑
m,n

LimL jn〈ξmξn〉 = LLT = C. (A2)

Since L is triangular, each δi really only requires a sum over
j ≤ i, so this method is fast.

The matrix L is given by

L =




1 0 0 · · · 0

c12

√
1 − c2

12 0 · · · 0

c13
c23−c12c13√

1−c2
12

√
1 − c3R−1

2 cT3 · · · 0

...
...

...
. . .

...

c1n
c2n−c12c1n√

1−c2
12

c3n−c
∗n
3 R−1

2 cT3√
1−c3R

−1
2 cT3

· · ·

√
1 − cnR−1

n−1cTn



,

(A3)

where the ci j are the elements of C, Rm = ci j |mi, j=1, R−1
m is its

inverse, and c∗ j
i
= (c1 j ,c2 j , . . . ,ci−1 j ) for j ≥ i, so ci ≡ c∗i

i
.

Inserting this expression for L into equation (A1) shows that,
in effect, this algorithm gets δi as a Gaussian random variate
with mean and variance which are constrained by the heights
on the previous steps. I.e., equation (A1) is equivalent to
equation (2) of the main text with σn |n−1, ...,1 =

√
Lnn .

Algorithmically, our Cholesky decomposition algorithm
constructs L as follows:

input n,Ci j

for k = 1,2, ...,n do

Lkk ←
(
Ckk −

k−1∑
s=1

L2
ks

)1/2

for i = k + 1, k + 2, ...,n do

Lik ←
(
Cik −

k−1∑
s=1

LisLks

) /
Lkk

end

end

output Li j

All the trajectories for top-hat filtering shown in this paper
were constructed using this algorithm.

Note that we could instead have chosen to work with
the basis in which C is diagonal. If λk and vk denote the
eigenvalues and eigenvectors of C, then each δi is a suit-
ably weighted linear combination of all the vk . We call this
the ‘eigen-decomposition’ method. In practice, diagonaliz-
ing requires more operations than Cholesky, so it is not as
efficient. For small matrices, the difference is not large, but
when C is a 104 × 104 matrix, as for the walks shown in the
main text, we found Cholesky was about 40× faster than
the eigen-decomposition method.

Finally, it is interesting to contrast our Cholesky algo-
rithm with what the main text called the ‘traditional’ ap-
proach of Bond et al. (1991). This approach exploits the fact
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that the Fourier modes in a Gaussian field are independent.
Therefore, if gk denotes the amplitude of the kth Fourier

mode, then the walk δ j =
∑ j

k=1 gk that one gets by includ-
ing one Fourier mode at a time, is Markov. Suppose we gen-
eralize this slightly to define δ j =

∑
W jk gk , where W jk is

a ‘smoothing filter’, and the sum is over all k. Clearly, the
statistics of δ j depend on the form of W . Markov walks re-
sult if W jk = 1 for k ≤ j and Wi j = 0 otherwise, but for all
other W , the δ j are not Markov. Thus, if W is known (e.g.,
the TopHat we used in the main text), then one approach is
to generate Markov walks and then smooth them with the
appropriately chosen filter to obtain the non-Markov walks.
For generic smoothing filters, each δ j is a weighted sum of
all the gk (rather than of only the previous gk ). Moreover,
since this algorithm is effectively computing a Monte-Carlo
integration over the Fourier modes gk , the steps in Fourier
space must be rather closely spaced. This slows this tra-
ditional algorithm for accounting for correlations between
scales considerably.
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