CE693 Advanced Computer
Networks

Review 2 — Transport Protocols

Acknowledgments: Lecture slides are from the graduate level Computer
Networks course thought by Srinivasan Seshan at CMU. When slides are
obtained from other sources, a a reference will be noted on the bottom
of that slide. A full list of references is provided on the last slide.

Outline i‘

Transport introduction

Error recovery & flow control
TCP flow control/connection setup/data transfer
TCP reliability

Congestion sources and collapse

Congestion control basics

Transport Protocols

* Lowest level end-to-
end protocaol.

« Header generated by
sender is interpreted
only by the destination

* Routers view transport
header as part of the

payload
* Not always true... “
* Firewalls nn

Physical <—>--<—> Physical

router

Functionality Split

* Network provides best-effort delivery

« End-systems implement many functions
Reliability
In-order delivery
Demultiplexing
Message boundaries
Connection abstraction
Congestion control

Transport Protocols

« UDP provides just integrity and demux
 TCP adds...

Connection-oriented

Reliable

Ordered

Byte-stream

Full duplex

Flow and congestion controlled

« DCCP, SCTP -- not widely used.

UDP: User Datagram Protocol [RFC 768]

“No frills,” “bare bones”
Internet transport
protocol

“Best effort” service,
UDP segments may be:
* Lost
* Delivered out of order to
app
Connectionless:

* No handshaking between
UDP sender, receiver

« Each UDP segment
handled independently of
others

Why Is there a UDP?

No connection establishment
(which can add delay)

Simple: no connection state
at sender, receiver

Small header

No congestion control: UDP
can blast away as fast as
desired

UDP, cont.

Often used for
streaming

multimedia apps Length,in | Source port#| Dest port#
e Loss tolerant bytes of UDP— [~ Length Checksum

o segment,
« Rate sensitive mf{udmg

Other UDP uses header

(why?):

« DNS Application
' data

5\/eeh?8|[e) I;[)ransfer metonge)

e Must be at
application layer

 Application-specific
error recovery

32 bits

UDP segment format

UDP Checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment — optional use!

Sender: Receiver:

« Treat segment contents as « Compute checksum of
sequence of 16-bit integers received segment

Checksum: addition (1’s - Check if computed checksum
complement sum) of segment equals checksum field value:

contents * NO - error detected
Sender puts checksum value

into UDP checksum field * YES - no error detected
But maybe errors

nonetheless?

High-Level TCP Characteristics

* Protocol implemented entirely at the ends
 Fate sharing (on IP)
* Protocol has evolved over time and will continue
to do so
* Nearly impossible to change the header
» Use options to add information to the header
» Change processing at endpoints
» Backward compatibility is what makes it TCP

TCP Header

«

Flags: SYN
FIN
RESET
PUSH
URG
ACK

Source port

Destination port

Sequence number

Acknowledgement

HdrLen| o

Flags

Advertised window

Checksum

Urgent pointer

Options (variable)

Data

Evolution of TCP

1984
1975 :
Nagel’s algorithm
Til"?':e,;quzz l;'g,?;/j,;ha:e to reduce overhead 1987
IySIGCOMM 7350 of small packets; Karn’s algorithm 1990
: predicts congestion to better estimate 4.3BSD Reno
collapse round-trip time fast retransmit
1983 N N delayeq\ACK S
BSD Unix 4.2 1986 1988
1974 supports TCP/IP Congestion Van Jacobson’s
TCP described by R collapse algorithms
Vint Cerf and Bob Kahn observed congestion avoidance
In IEEE Trans Comm 1982 and congestion control
TCP & IP 0 (most implemented in
A RFC 793 & 791 4.3BSD Tahoe)

—IIIIIIII
1975 1980 1985 1990

12

TCP Through the 1990s

TITCP SACK TCP
(Braden) (Floyd et al)
Transaction Selective
TCP Acknowledgement
A
A
1993 1994 1996 1996
TCP Vegas ECN Hoe FACK TCP
(Brakmo et al) (Floyd) NewReno startup (Mathis et al)
delay-based Explicit and loss recovery extension to SACK
congestion avoidance Congestion A A
Notification
A
1993 1994 1996

Outline

«

Transport introduction

Error recovery & flow control

TCP flow control/connection setup/data transfer
TCP reliability

Congestion sources and collapse

Congestion control basics

Stop and Wait

ARQ

* Receiver sends
acknowledgement (ACK)
when it receives packet

Sender waits for ACK and
timeouts if it does not p

arrive within some time ;--%

period

Sender Receiver

Simplest ARQ protocol &

Send a packet, stop and
wait until ACK arrives

Performance

« Can only send one
packet per round trip

Recovering from Error

| —Sacket E"%

-

P

Pack ack

K | K

ACK lost Packet lost Early timeout
DUPLICATE

PACKETS!!!

16

How to Recognize Resends?

« Use sequence numbers
* both packets and acks

e Sequence # in packet is finite
- How big should it be?

* For stop and wait?

* One bit —won'’t send seq #1
until received ACK for seq #0

How to Keep the Pipe Full?

« Send multiple packets without
waiting for first to be acked

« Number of pkts in flight = window:
Flow control

* Reliable, unordered delivery
« Several parallel stop & waits
* Send new packet after each ack

« Sender keeps list of unack’ed
packets; resends after timeout

« Receiver same as stop & wait

 How large a window is needed?

« Suppose 10Mbps link, 4ms delay,
500byte pkts

« 1?7107 207?
« delay * bandwidth = capacity of pipe

Sliding Window

* Reliable, ordered delivery
* Recelver has to hold onto a packet until all prior
packets have arrived
« Why might this be difficult for just parallel stop & wait?
« Sender must prevent buffer overflow at receiver
» Circular buffer at sender and receiver
« Packets in transit < buffer size

* Advance when sender and receiver agree packets at
beginning have been received

Sender/Receiver State

Sender Receiver

Max ACK received Next seqnum Next expected Max acceptable

l l

'"IIIiDUDDiII[DDDU“ gLl e

Sender window Receiver window

Sent Not Acked I Received & Acked Acceptable Packet

Not Usable Not Usable

Sequence Numbers

 How large do sequence numbers need to be?
« Must be able to detect wrap-around
« Depends on sender/receiver window size
- E.Q.
 Max seq = 7, send win=recv win=7/
 If pkts 0..6 are sent succesfully and all acks lost
* Receiver expects 7,0..5, sender retransmits old 0..6!!!

« Max sequence must be = send window + recv window

Window Sliding — Common Case "

* On reception of new ACK (i.e. ACK for something that was

not acked earlier)
 Increase sequence of max ACK received
« Send next packet
* On reception of new in-order data packet (next expected)
« Hand packet to application
« Send cumulative ACK — acknowledges reception of all packets up

to sequence number
* Increase sequence of max acceptable packet

Loss Recovery

* On reception of out-of-order packet

« Send nothing (wait for source to timeout)

« Cumulative ACK (helps source identify loss)
* Timeout (Go-Back-N recovery)

« Set timer upon transmission of packet

* Retransmit all unacknowledged packets
» Performance during loss recovery

* No longer have an entire window in transit

« Can have much more clever loss recovery

Important Lessons

e Transport service
 UDP - mostly just IP service
« TCP - congestion controlled, reliable, byte stream

« Types of ARQ protocols
» Stop-and-wait = slow, simple
* Go-back-n = can keep link utilized (except w/ losses)
» Selective repeat - efficient loss recovery -- used in
SACK
 Sliding window flow control
« Addresses buffering issues and keeps link utilized

Good Ideas So Far...

* Flow control

 Sliding window

* Loss recovery
* Timeouts

* Acknowledgement-driven recovery (selective repeat or
cumulative acknowledgement)

Outline

«

Transport introduction

Error recovery & flow control

TCP flow control/connection setup/data transfer
TCP reliability

Congestion sources and collapse

Congestion control basics

26

More on Sequence Numbers

« 32 Bits, Unsigned - for bytes not packets!

« Why So Big?
* For sliding window, must have
. |Sequence Space| > |Sending Window| + |
Receiving Window|
* No problem

« Also, want to guard against stray packets

« With IP, packets have maximum lifetime of 120s
« Sequence number would wrap around in this time at 286Mbps

TCP Flow Control

 TCP is a sliding window protocol

* For window size n, can send up to n bytes without
receiving an acknowledgement

* When the data is acknowledged then the window
slides forward

« Each packet advertises a window size
* Indicates number of bytes the receiver has space for

 Original TCP always sent entire window
« Congestion control now limits this

Window Flow Control: Send Side

window

Sent and acked | Sent but not acked

Next to be sent

Window Flow Control: Send Side

Packet Sent

Acknowledgment

~lFiags | Window”

. Ghecksum | UrgentFainter
oo/

v v

«

Packet Received

Sequence Number

HL/Flags _—

. Ghegkeum | Urgent Pointer

App write

: }

acknowledged sent

o >

to be sent outside window

Performance Considerations

* The window size can be controlled by receiving
application
« Can change the socket buffer size from a default (e.g.
8Kbytes) to a maximum value (e.g. 64 Kbytes)
* The window size field in the TCP header limits the
window that the receiver can advertise
* 16 bits > 64 KBytes

« TCP options to get around 64KB limit - scales window
size

Establishing Connection:
Three-\Way handshake

« Each side notifies other of
starting sequence number it
will use for sending

* Why not simply chose 07

* Must avoid overlap with earlier ACK: SeqC+1
incarnation SYN: SeqS

« Security issues

- Each side acknowledges
other’s sequence number

 SYN-ACK: Acknowledge
sequence number + 1

« Can combine second SYN
with first ACK Client Server

32

Outline

Transport introduction

Error recovery & flow control

TCP flow control/connection setup/data transfer
TCP reliability

Congestion sources and collapse

Congestion control basics

Reliability Challenges

« Congestion related losses
» Variable packet delays
* What should the timeout be?

« Reordering of packets

« How to tell the difference between a delayed packet
and a lost one?

Round-trip Time Estimation

« Wait at least one RTT before retransmitting

* Importance of accurate RTT estimators:

e Low RTT estimate
* unneeded retransmissions

« High RTT estimate
* poor throughput

 RTT estimator must adapt to change in RTT
* But not too fast, or too slow!

Original TCP Round-trip Estimator

* Round trip times
exponentially averaged:

New RTT = a (old RTT) +
(1 - a) (new sample)

Recommended value for
a:0.8-0.9

 0.875 for most TCP’s

Nl

* Retransmit timer setto (b * RTT), where b = 2
« Every time timer expires, RTO exponentially backed-off

RTT Sample Ambiguity

A B

W

RTO
Sample r

RTT ’W

o>

v \ 4

« Karn’s RTT Estimator

 |If a segment has been retransmitted:
* Don’t count RTT sample on ACKs for this segment
« Keep backed off time-out for next packet
« Reuse RTT estimate only after one successful transmission

Timestamp Extension

Used to improve timeout mechanism by more
accurate measurement of RTT

When sending a packet, insert current time into
option

« 4 bytes for time, 4 bytes for echo a received timestamp
Receiver echoes timestamp in ACK

 Actually will echo whatever is in timestamp

Removes retransmission ambiguity

« Can get RTT sample on any packet

Timer Granularity

 Many TCP implementations set RTO in multiples
of 200,500,1000ms

 Why?

* Avoid spurious timeouts — RTTs can vary quickly due to
cross traffic

* Reduce timer expensive timer interrupts on hosts

* What happens for the first couple of packets?
* Pick a very conservative value (seconds)

Fast Retransmit -- Avoiding Timeouts

« What are duplicate acks (dupacks)?
« Repeated acks for the same sequence

* When can duplicate acks occur?

* Loss
» Packet re-ordering

« Assume re-ordering is infrequent and not of large
magnitude
» Use receipt of 3 or more duplicate acks as indication of loss
* Don’t wait for timeout to retransmit packet

Fast Retransmit

[|
[|
[|
[|
[|
[|
[|
[|
[|
X __ Retransmission
[|
Sequence NO : 8 00— Dupllcate ACkS
[| o
[| o
[| o
[| o
[| o
[| o
[| o
[| o
[| o
[| o
[| o
[| o
Il Packets
O Acks

Time

43

TCP (Reno variant)

«

Sequence No

Il Packets
O Acks

omnm

ocoOEENREHN

OOOOIIIIIIIK

P <EPed R

0000000

(@)

Now what? - timeout

Time

44

SACK

Basic problem is that cumulative acks provide little
information

Selective acknowledgement (SACK) of packets
received

* Implemented as a TCP option

* Encoded as a set of received byte ranges (max of 4
ranges/often max of 3)

When to retransmit?

 Still need to deal with reordering - wait for out of order
by 3pkts

SACK

«

Sequence No

Il Packets
O Acks

omnm

ocoOEENREHN

OOOOIIIIIIIK

EEEEREE NN

0000000

Now what? — send
retransmissions as soon
as detected

Time

46

Performance Issues
Timeout >> fast rexmit
Need 3 dupacks/sacks

Not great for small transfers
* Don’t have 3 packets outstanding

What are real loss patterns like?

Important Lessons

* Three-way TCP Handshake
 TCP timeout calculation = how is RTT estimated

 Modern TCP loss recovery

« Why are timeouts bad?
* How to avoid them? - e.g. fast retransmit

Outline

«

Transport introduction

Error recovery & flow control

TCP flow control/connection setup/data transfer
TCP reliability

Congestion sources and collapse

Congestion control basics

49

Congestion

10 Mbps
>® 1.5 Mbps

100 Mbps

 Different sources compete for resources
Inside network

 Why is it a problem?
 Sources are unaware of current state of resource

e Sources are unaware of each other

* In many situations will result in < 1.5 Mbps of
throughput (congestion collapse)

Causes & Costs of Congestion “

* Four senders — multihop paths Q: What happens as rate
» Timeout/retransmit increases?

Host A Host B

7 A
— O
Host D i
R1
- <~§ RO Host C

51

Causes & Costs of Congestion

C/2

o
O
<

Ain

Host A
‘ >
Host D
f ‘—é

—

)|

R4

R1

R3

g

R2

(

P NEEEIRE]
LTI
il

* When packet dropped, any “upstream

transmission capacity used for that packet

was wasted!

[Tl

|

52

Congestion Collapse

 Definition: Increase in network load results in
decrease of useful work done

* Many possible causes

« Spurious retransmissions of packets still in flight
 Classical congestion collapse
 Solution: better timers and TCP congestion control

* Undelivered packets

« Packets consume resources and are dropped elsewhere in
network

« Solution: congestion control for ALL traffic

 Etc..

Where to Prevent Collapse?

« Can end hosts prevent problem?
* Yes, but must trust end hosts to do right thing

* E.g., sending host must adjust amount of data it puts in
the network based on detected congestion

« Can routers prevent collapse?
* No, not all forms of collapse

* Doesn’'t mean they can't help
« Sending accurate congestion signals
* Isolating well-behaved from ill-behaved sources

Congestion Control and Avoidance

* A mechanism which:
» Uses network resources efficiently
* Preserves fair network resource allocation
* Prevents or avoids collapse
« Congestion collapse is not just a theory
« Has been frequently observed in many networks

Approaches For Congestion Control

Two broad approaches towards congestion control:

End-to-end Network-assisted

No explicit feedback from * Routers provide feedback
network to end systems

Congestion inferred from Explicit rate sender should

end-system observed loss, sendat
 Single bit indicating

delay congestion (SNA, DEC bit,
Approach taken by TCP TCP/IP ECN, ATM)
* Problem: makes routers

complicated

Example: TCP Congestion Control

* Very simple mechanisms in network
* FIFO scheduling with shared buffer pool
» Feedback through packet drops

« TCP interprets packet drops as signs of congestion and
slows down

« This is an assumption: packet drops are not a sign of congestion
in all networks

« E.g. wireless networks

* Periodically probes the network to check whether more
bandwidth has become available.

Outline

«

Transport introduction

Error recovery & flow control

TCP flow control/connection setup/data transfer
TCP reliability

Congestion sources and collapse

Congestion control basics

59

Basic Control Model

 Let's assume window-based control

* Reduce window when congestion Is perceived

* How is congestion signaled?
 Either mark or drop packets

* When is a router congested?
 Drop tail queues — when queue is full
* Average queue length — at some threshold

* |ncrease window otherwise
* Probe for available bandwidth — how?

Linear Control

« Many different possibilities for reaction to
congestion and probing

« Examine simple linear controls
* Window(t + 1) = a + b Window(t)
- Different a;/b; for increase and a /b, for decrease

« Supports various reaction to signals
* Increase/decrease additively
 Increased/decrease multiplicatively
* Which of the four combinations is optimal?

Phase plots

« Simple way to visualize behavior of competing
connections over time

A

Fairness Line

User 2’s
Allocation
X,

Efficiency Line

>
User 1’s Allocation x;

Phase plots

* What are desirable properties?
 What if flows are not equal?

A

. Fairness Line

Overlga'a

User 2’s
Allocation . .
X, N —— Optimal point

Undefutilization

Efficiency Line

User 1’s Allocation x;

Additive Increase/Decrease

«

- Both X, and X, increase/decrease by the same amount

over time

User 2’s
Allocation
X,

. Fairness Line

Efficiency Line

User 1’s Allocation x,

65

Multiplicative Increase/Decrease “

- Both X, and X, increase by the same factor over time

« Extension from origin — constant fairness

. Fairness Line

User 2’s
Allocation
X,

Efficiency Line

User 1’s Allocation x,

Convergence to Efficiency

Fairness Line

User 2’s
Allocation

User 1’s Allocation x,

67

Distributed Convergence to Efficiency

a=0

- Fairness Line

User 2’s
Allocation }/.: %«
X, RARN

Efficiency Line

User 1’s Allocation x,

68

Convergence to Fairness

Fairness Line

ine
>

L

iciency

Eff

glg eyttt
g tevt B DR IR

User 2’s
Allocation

User 1’s Allocation x,

69

Convergence to Efficiency & Fairness

.~ Fairess Line

User 2’s
Allocation
X,

Efficiency Line

User 1’s Allocation x,

70

Increase

User 2’s
Allocation
X,

Fairness Line

Efficiency Line

N

User 1’s Allocation x,

71

What is the Right Choice?

» Constraints limit us to AIMD
« Can have multiplicative term in increase (MAIMD)
* AIMD moves towards optimal point

. Fairness Line

User 2’s
Allocation
X,

Efficiency Line

User 1’s Allocation x;

TCP Congestion Control

« Congestion Control
« RED

* Assigned Reading

+ [FJ93] Random Early Detection Gateways for
Congestion Avoidance

« [TFRC] Equation-Based Congestion Control for Unicast
Applications

