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Today’s Lecture

• Structural generators
• Power laws
• HOT graphs
• Assigned reading

• On Power-Law Relationships of the Internet 
Topology

• A First Principles Approach to Understanding 
the Internet’s Router-level Topology
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Outline

• Motivation/Background

• Power Laws

• Optimization Models
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Why study topology?

• Correctness of network protocols typically 
independent of topology

• Performance of networks critically 
dependent on topology
• e.g., convergence of route information

• Internet impossible to replicate 
• Modeling of topology needed to generate 

test topologies
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Internet topologies
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More on topologies..
• Router level topologies reflect physical connectivity 

between nodes
• Inferred from tools like traceroute or well known public 

measurement projects like Mercator and Skitter

• AS graph reflects a peering relationship between two 
providers/clients
• Inferred from inter-domain routers that run BGP and publlic 

projects like Oregon Route Views

• Inferring both is difficult, and often inaccurate 
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Hub-and-Spoke Topology

• Single hub node
• Common in enterprise networks
• Main location and satellite sites
• Simple design and trivial routing

• Problems
• Single point of failure
• Bandwidth limitations
• High delay between sites
• Costs to backhaul to hub
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Simple Alternatives to Hub-and-Spoke
• Dual hub-and-spoke

• Higher reliability
• Higher cost
• Good building block

• Levels of hierarchy
• Reduce backhaul cost
• Aggregate the 

bandwidth
• Shorter site-to-site 

delay …
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Abilene Internet2 Backbone
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Points-of-Presence (PoPs)
• Inter-PoP links

• Long distances
• High bandwidth

• Intra-PoP links
• Short cables between 

racks or floors
• Aggregated bandwidth

• Links to other 
networks
• Wide range of media 

and bandwidth

Intra-PoP

Other networks

Inter-PoP
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Deciding Where to Locate Nodes and Links

• Placing Points-of-Presence (PoPs)
• Large population of potential customers
• Other providers or exchange points
• Cost and availability of real-estate
• Mostly in major metropolitan areas

• Placing links between PoPs
• Already fiber in the ground
• Needed to limit propagation delay
• Needed to handle the traffic load
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Trends in Topology Modeling
Observation

• Long-range links are expensive

• Real networks are not random, 
but have obvious hierarchy

• Internet topologies exhibit 
power law degree distributions 
(Faloutsos et al., 1999)

• Physical networks have hard 
technological (and economic) 
constraints.

Modeling Approach
• Random graph (Waxman88)

• Structural models (GT-ITM 
Calvert/Zegura, 1996)

• Degree-based models replicate 
power-law degree sequences

• Optimization-driven models 
topologies consistent with design 
tradeoffs of network engineers
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Waxman model (Waxman 1988)

• Router level model
• Nodes placed at random 

in 2-d space with 
dimension L

• Probability of edge (u,v):
• ae^{-d/(bL)}, where d is 

Euclidean distance (u,v), a 
and b are constants

• Models locality
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Real world topologies

• Real networks exhibit
• Hierarchical structure
• Specialized nodes (transit, stub..)
• Connectivity requirements
• Redundancy

• Characteristics incorporated into the 
Georgia Tech Internetwork Topology Models 
(GT-ITM) simulator (E. Zegura, K.Calvert 
and M.J. Donahoo, 1995)
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Transit-stub model (Zegura 1997)
• Router level model
• Transit domains 

• placed in 2-d space
• populated with routers 
• connected to each other

• Stub domains 
• placed in 2-d space
• populated with routers
• connected to transit 

domains

• Models hierarchy
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So…are we done?

• No!
• In 1999, Faloutsos, Faloutsos and 

Faloutsos published a paper, demonstrating 
power law relationships in Internet graphs

• Specifically, the node degree distribution 
exhibited power laws

That Changed Everything…..
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Outline

• Motivation/Background

• Power Laws

• Optimization Models
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Power laws in AS level topology
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A few nodes have lots of connections
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GT-ITM abandoned..

• GT-ITM did not give power law degree 
graphs

• New topology generators and explanation 
for power law degrees were sought

• Focus of generators to match degree 
distribution of observed graph
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Power law random graph (PLRG)
• Operations

• assign degrees to nodes drawn from power law distribution
• create kv copies of node v; kv degree of v.
• randomly match nodes in pool
• aggregate edges

may be disconnected, contain multiple edges, self-loops
• contains unique giant component for right choice of 

parameters 
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Barabasi model: fixed exponent

• incremental growth
• initially, m0 nodes
• step: add new node i with m edges

• linear preferential attachment
• connect to node i with probability ki / ∑ kj
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Inet (Jin 2000)
• Generate degree sequence 
• Build spanning tree over nodes 

with degree larger than 1, 
using preferential connectivity
• randomly select node u not in 

tree
• join u to existing node v with 

probability d(v)/Σd(w)

• Connect degree 1 nodes using 
preferential connectivity

• Add remaining edges using 
preferential connectivity
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Features of Degree-Based Models

• Degree sequence follows a power law (by 
construction)

• High-degree nodes correspond to highly connected 
central “hubs”, which are crucial to the system

• Achilles’ heel: robust to random failure, fragile to 
specific attack 25

Preferential Attachment Expected Degree Sequence



Does Internet graph have these properties?

• No…(There is no Memphis!)
• Emphasis on degree distribution - structure 

ignored
• Real Internet very structured
• Evolution of graph is highly constrained
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Problem With Power Law

• ... but they're descriptive models!

• No correct physical explanation, need an 
understanding of:
• the driving force behind deployment
• the driving force behind growth
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Outline

• Motivation/Background

• Power Laws

• Optimization Models
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Li et al.

• Consider the explicit design of the Internet
• Annotated network graphs (capacity, 

bandwidth)
• Technological and economic limitations
• Network performance

• Seek a theory for Internet topology that is 
explanatory and not merely descriptive.
• Explain high variability in network connectivity
• Ability to match large scale statistics (e.g. 

power laws) is only secondary evidence
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Heuristically Optimal Topology

Hosts

Edges

Cores

Mesh-like core of fast, low degree routers

High degree nodes 
are at the edges.
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Comparison Metric: Network Performance

Given realistic technology constraints on routers, how well 
is the network able to carry traffic?

Step 1: Constrain to 
be feasible
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Likelihood-Related Metric

• Easily computed for any graph
• Depends on the structure of the graph, not the generation 

mechanism
• Measures how “hub-like” the network core is

• For graphs resulting from probabilistic construction (e.g. PLRG/
GRG), 

LogLikelihood (LLH) ∝ L(g)

• Interpretation: How likely is a particular graph (having given 
node degree distribution) to be constructed?

Define the metric (di = degree of 
node i)
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Lmax
l(g) = 1
P(g) = 1.08 x 1010
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PA PLRG/GRGHOT

Structure Determines Performance

P(g) = 1.19 x 1010 P(g) = 1.64 x 1010 P(g) = 1.13 x 1012 
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Summary Network Topology
• Faloutsos3 [SIGCOMM99] on Internet topology

• Observed many “power laws” in the Internet structure
• Router level connections, AS-level connections, neighborhood sizes

• Power law observation refuted later, Lakhina [INFOCOM00]

• Inspired many degree-based topology generators
• Compared properties of generated graphs with those of measured 

graphs to validate generator
• What is wrong with these topologies? Li et al [SIGCOMM04]

• Many graphs with similar distribution have different properties
• Random graph generation models don’t have network-intrinsic 

meaning
• Should look at fundamental trade-offs to understand topology

• Technology constraints and economic trade-offs
• Graphs arising out of such generation better explain topology and its 

properties, but are unlikely to be generated by random processes!
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The elephant in the room…

• How good is the underlying data on which 
these studies are based?

• E.g., sampling bias  traceroute of shortest 
paths on random graph can produce power-
law distribution [Lakhina03]
• Similar issues with AS-level view

• Router level data is very noisy
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Better Measurements?

• Rocketfuel [sigcomm02]
• Better router alias resolution
• Detailed maps based on multiple viewpoints

• RouteViews and BGP collection efforts
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Next Lecture

• Overlay networks
• Challenges in deploying new protocols
• Required readings:

• Active network vision and reality: lessons from 
a capsule-based system

• Optional readings:
• Resilient Overlay Networks
• Future Internet Architecture: Clean-Slate 

Versus Evolutionary Research
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