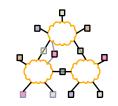

CE693: Adv. Computer Networking

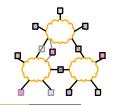
L-13 Sensor Networks


Acknowledgments: Lecture slides are from the graduate level Computer Networks course thought by Srinivasan Seshan at CMU. When slides are obtained from other sources, a a reference will be noted on the bottom of that slide. A full list of references is provided on the last slide.

Sensor Networks

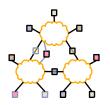
- Directed Diffusion
- Aggregation
- Assigned reading
 - TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks
 - Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks

Outline


Sensor Networks

Directed Diffusion

TAG

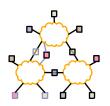

Synopsis Diffusion

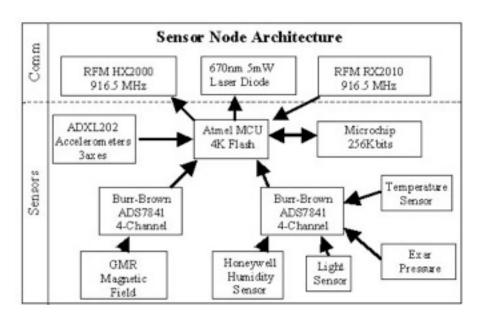
Smart-Dust/Motes

- First introduced in late 90's by groups at UCB/UCLA/ USC
 - Published at Mobicom/SOSP conferences
- Small, resource limited devices
 - CPU, disk, power, bandwidth, etc.
- Simple scalar sensors temperature, motion
- Single domain of deployment (e.g. farm, battlefield, etc.) for a targeted task (find the tanks)
- Ad-hoc wireless network

Smart-Dust/Motes

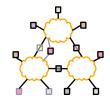
- Hardware
 - UCB motes
- Programming
 - TinyOS
- Query processing
 - TinyDB
 - Directed diffusion
- Power management
 - MAC protocols
 - Adaptive topologies





Berkeley Motes

- Devices that incorporate communications, processing, sensors, and batteries into a small package
- Atmel microcontroller with sensors and a communication unit
 - RF transceiver, laser module, or a corner cube reflector
 - Temperature, light, humidity, pressure, 3 axis magnetometers, 3 axis accelerometers



Berkeley N	Motes (Le	vis & Culler	, ASPLOS	02)

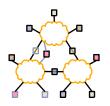
Mote Type	WeC	rene2	rene2	dot	mica
Date	9/99	10/00	6/01	8/01	2/02
Microcontroller		•			
Type	AT90LS8535 ATM		Iega163	ATMega103	
Prog. mem. (KB)	8	8		16	128
RAM (KB)	0.5	0.5		1	4
Nonvolatile storage					
Chip	24LC256			AT45DB041B	
Connection type	I2C			SPI	
Size (KB)		32			512
Default Power source	ce				
Type	Li	Al	k	Li	Alk
Size	CR2450	2xA	AΑ	CR2032	2xAA
Capacity (mAh)	575	28	50	225	2850
Communication	10				•
Radio	5	RFM TR1000			
Rate (Kbps)	10	10	10	10	10/40
Modulation type	OOK			OOK/ASK	

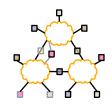
Sensor Net Sample Apps

Habitat Monitoring: Storm petrels on great duck island, microclimates on James Reserve.

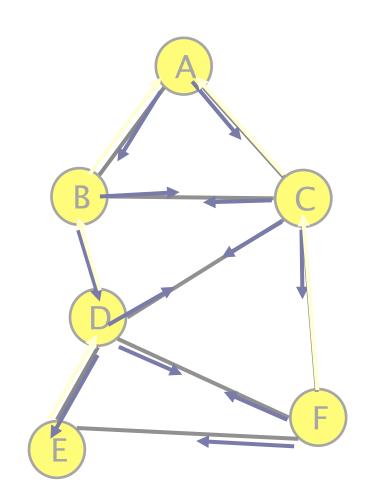
Earthquake monitoring in shaketest sites.

<u>Vehicle detection</u>: sensors along a road, collect data about passing vehicles.

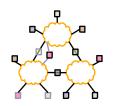



Traditional monitoring apparatus.

Metric: Communication

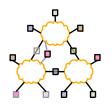


- Lifetime from one pair of AA batteries
 - 2-3 days at full power
 - 6 months at 2% duty cycle
- Communication dominates cost
 - < few mS to compute
 - 30mS to send message

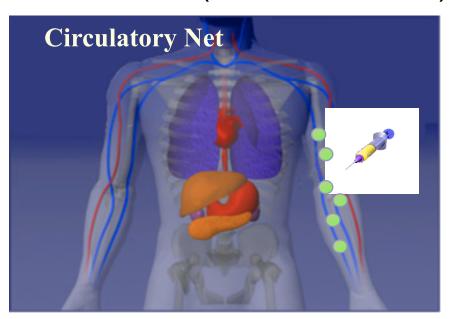

Communication In Sensor Nets

- Radio communication has high link-level losses
 - typically about 20% @
 5m
- Ad-hoc neighbor discovery
- Tree-based routing

Outline


Sensor Networks

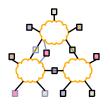
Directed Diffusion


TAG

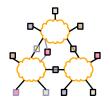
Synopsis Diffusion

The long term goal

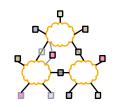
Embed numerous distributed devices to monitor and interact with physical world: in workspaces, hospitals, homes, vehicles, and "the environment" (water, soil, air...)



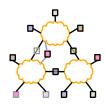
Network these devices so that they can coordinate to perform higher-level tasks.


Requires robust distributed systems of tens of thousands of devices.

Motivation


- Properties of Sensor Networks
 - Data centric, but not node centric
 - Have no notion of central authority
 - Are often resource constrained
- Nodes are tied to physical locations, but:
 - They may not know the topology
 - They may fail or move arbitrarily
- Problem: How can we get data from the sensors?

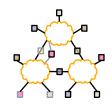
Directed Diffusion


- Data centric nodes are unimportant
- Request driven:
 - Sinks place requests as interests
 - Sources are eventually found and satisfy interests
 - Intermediate nodes route data toward sinks
- Localized repair and reinforcement
- Multi-path delivery for multiple sources, sinks, and queries

Motivating Example

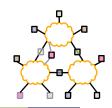
- Sensor nodes are monitoring a flat space for animals
- We are interested in receiving data for all 4legged creatures seen in a rectangle
- We want to specify the data rate

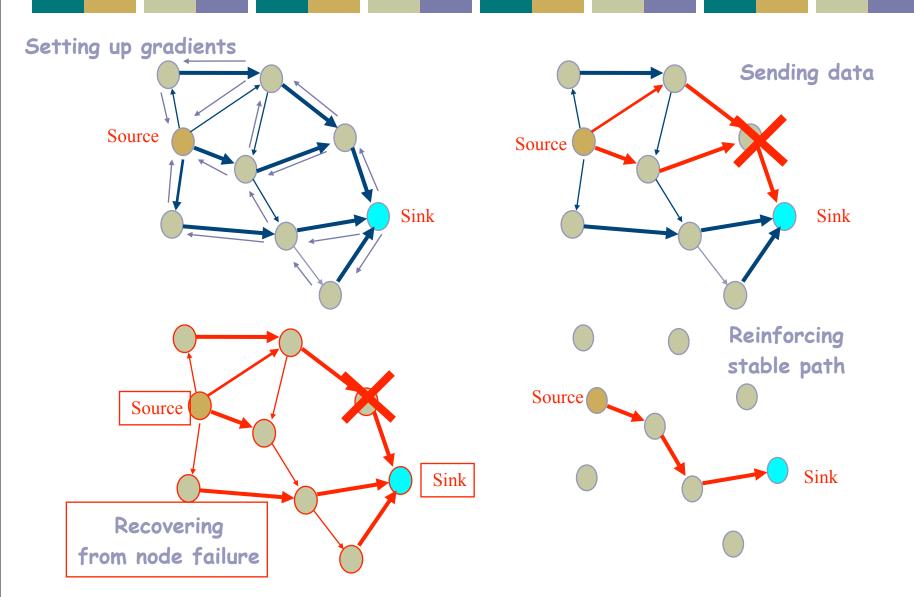
Interest and Event Naming

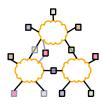

Query/interest:

- 1. Type=four-legged animal
- 2. Interval=20ms (event data rate)
- 3. Duration=10 seconds (time to cache this query)
- 4. Rect=[-100, 100, 200, 400]

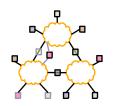
Reply:


- 1. Type=four-legged animal
- 2. Instance = elephant
- 3. Location = [125, 220]
- 4. Intensity = 0.6
- 5. Confidence = 0.85
- 6. Timestamp = 01:20:40
- Attribute-Value pairs, no advanced naming scheme


Diffusion (High Level)


- Sinks broadcast interest to neighbors
- Interests are cached by neighbors
- Gradients are set up pointing back to where interests came from at low data rate
- Once a sensor receives an interest, it routes measurements along gradients

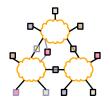
Illustrating Directed Diffusion



Summary

- Data Centric
 - Sensors net is queried for specific data
 - Source of data is irrelevant
 - No sensor-specific query
- Application Specific
 - In-sensor processing to reduce data transmitted
 - In-sensor caching
- Localized Algorithms
 - Maintain minimum local connectivity save energy
 - Achieve global objective through local coordination
- Its gains due to aggregation and duplicate suppression may make it more viable than ad-hoc routing in sensor networks

Outline


Sensor Networks

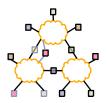
Directed Diffusion

TAG

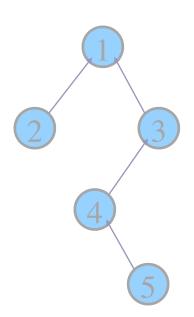
Synopsis Diffusion

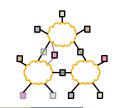
TAG Introduction

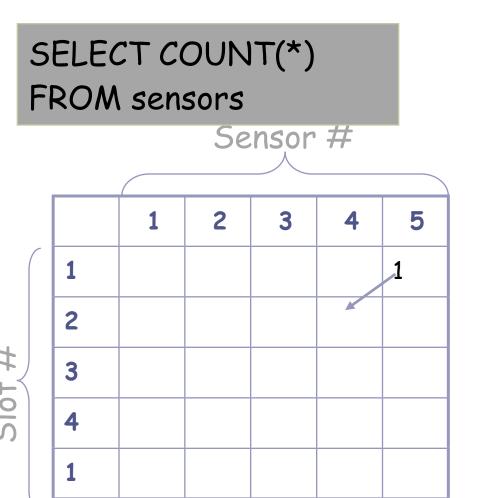
- Programming sensor nets is hard!
- Declarative queries are easy
 - Tiny Aggregation (TAG): In-network processing via declarative queries
- In-network processing of aggregates
 - Common data analysis operation
 - Communication reducing
 - Operator dependent benefit
 - Across nodes during same epoch
- Exploit semantics improve efficiency!

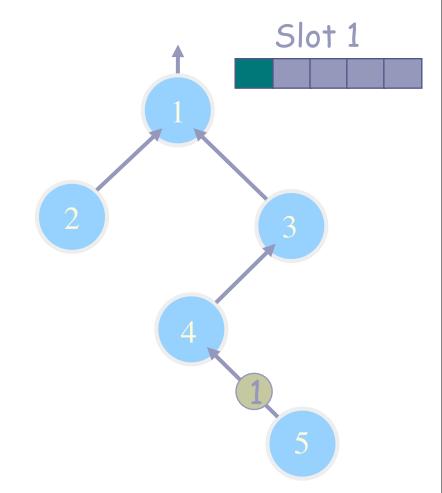


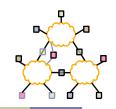
- Vehicle tracking application: 2 weeks for 2 students
- Vehicle tracking query: took 2 minutes to write, worked just as well!

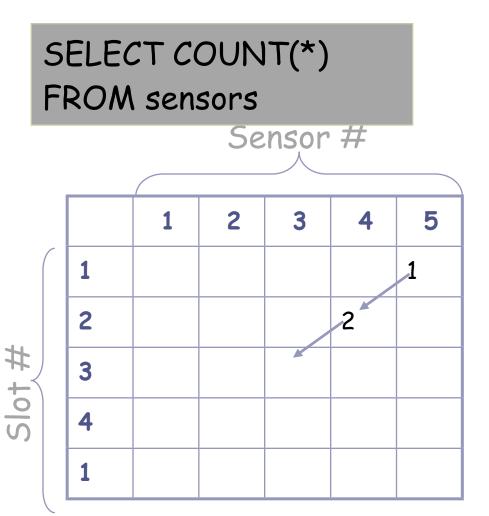


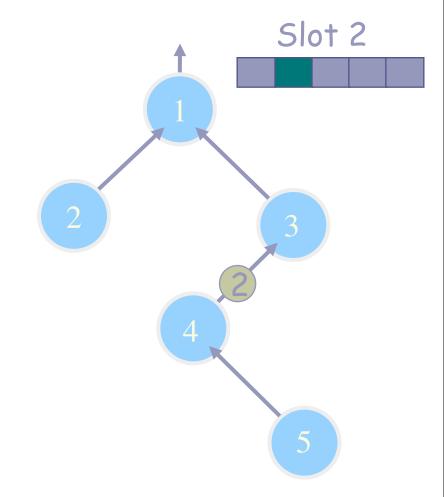

SELECT MAX(mag)
FROM sensors
WHERE mag > thresh
EPOCH DURATION 64ms

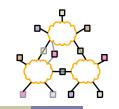

Basic Aggregation

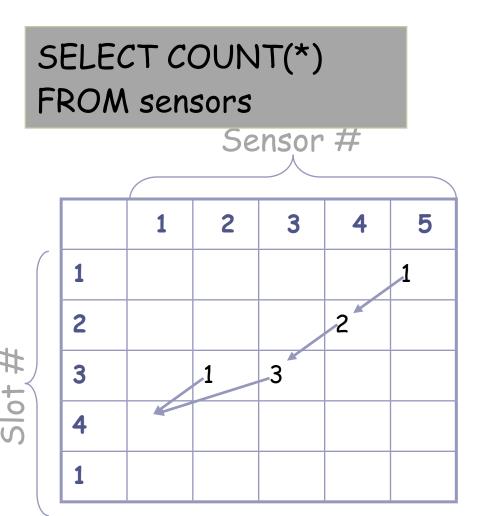


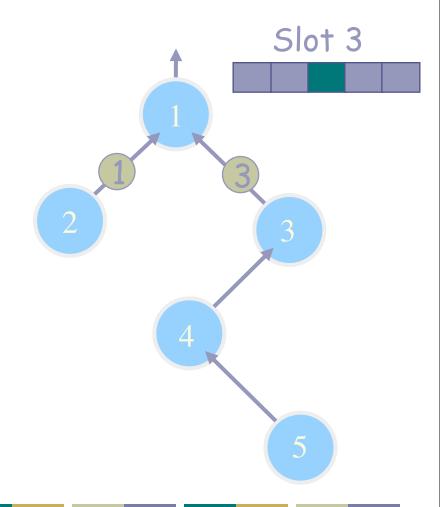

- In each epoch:
 - Each node samples local sensors once
 - Generates partial state record (PSR)
 - local readings
 - readings from children
 - Outputs PSR during its comm. slot.
- At end of epoch, PSR for whole network output at root

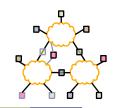


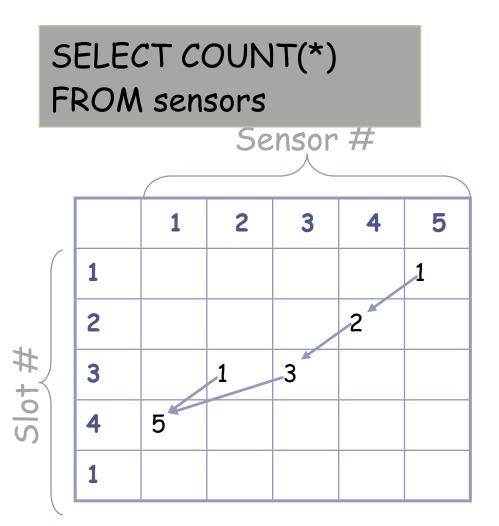


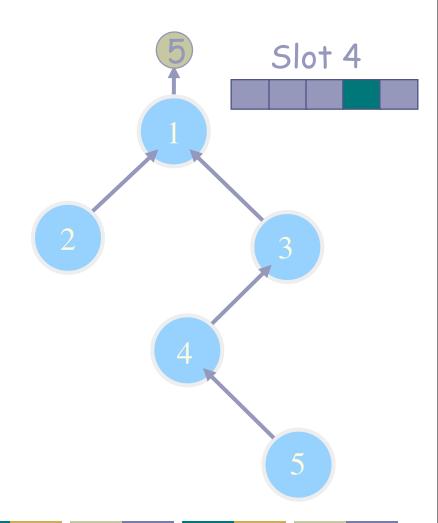


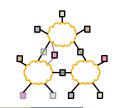


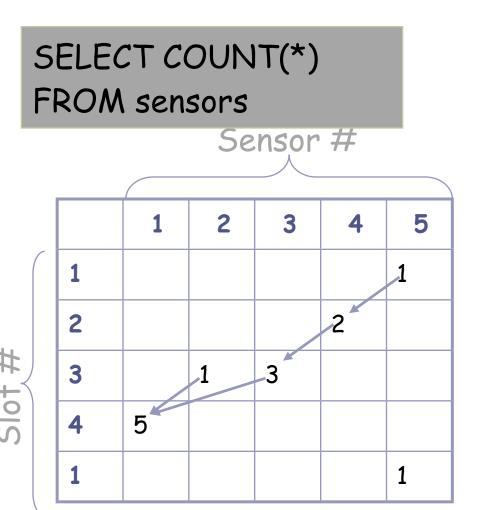


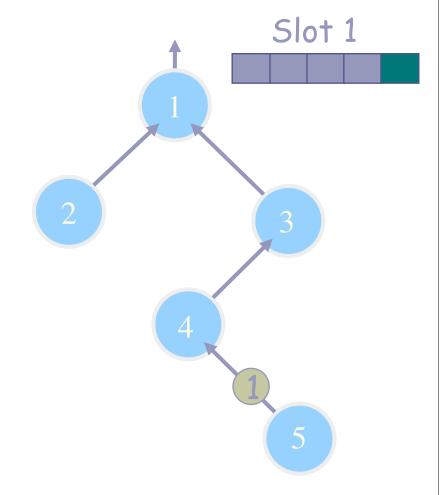


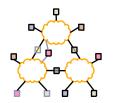


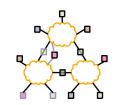






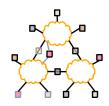





Types of Aggregates

 SQL supports MIN, MAX, SUM, COUNT, AVERAGE

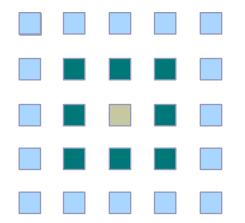
- Any function can be computed via TAG
- In network benefit for many operations
 - E.g. Standard deviation, top/bottom N, histograms, etc.
 - Compactness of PSR

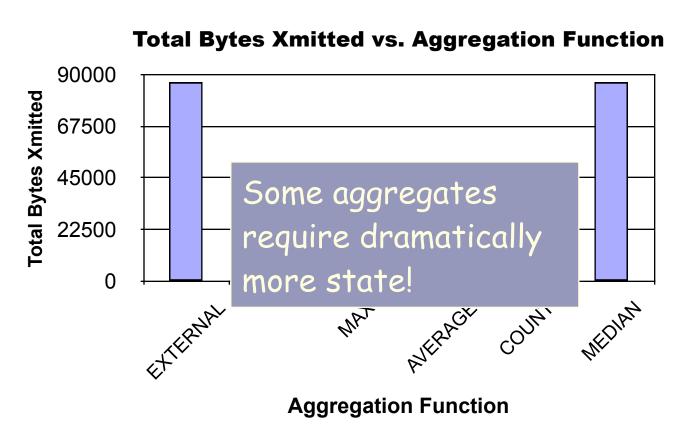

Taxonomy of Aggregates

- TAG insight: classify aggregates according to various functional properties
 - Yields a general set of optimizations that can automatically be applied

Property	Examples	Affects
Partial State	MEDIAN: unbounded, MAX: 1 record	Effectiveness of TAG
Duplicate Sensitivity	MIN : dup. insensitive, AVG : dup. sensitive	Routing Redundancy
Exemplary vs. Summary	MAX : exemplary COUNT: summary	Applicability of Sampling, Effect of Loss
Monotonic	COUNT: monotonic AVG: non-monotonic	Hypothesis Testing, Snooping

Benefit of In-Network Processing

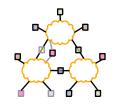

Simulation Results


2500 Nodes

50x50 Grid

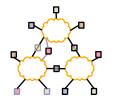
Depth = ~ 10

Neighbors = \sim 20

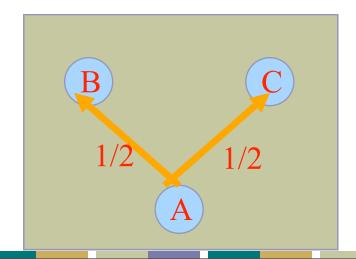


Optimization: Channel Sharing ("Snooping")

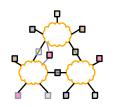
Insight: Shared channel enables optimizations


- Suppress messages that won't affect aggregate
 - E.g., MAX
 - Applies to all exemplary, monotonic aggregates

Optimization: Hypothesis Testing

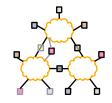


- Insight: Guess from root can be used for suppression
 - E.g. 'MIN < 50'
 - Works for monotonic & exemplary aggregates
 - Also summary, if imprecision allowed
- How is hypothesis computed?
 - Blind or statistically informed guess
 - Observation over network subset


Optimization: Use Multiple Parents

- For duplicate insensitive aggregates
- Or aggregates that can be expressed as a linear combination of parts
 - Send (part of) aggregate to all parents
 - In just one message, via broadcast
 - Decreases variance

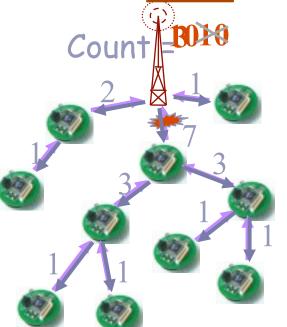
Outline


Sensor Networks

Directed Diffusion

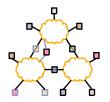
TAG

Synopsis Diffusion

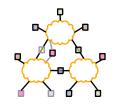

Aggregation in Wireless Sensors

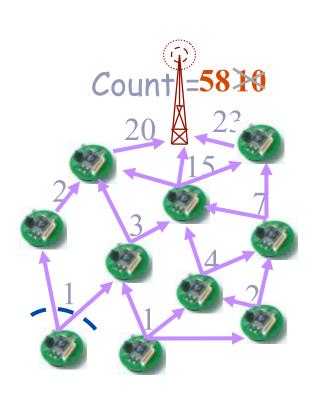
Aggregate data is often more important

In-network aggregation


over tree with unreliable communication

Used by current systems,
TinyDB [Madden et al. OSDI'02]
Cougar [Bonnet et al. MDM'01]

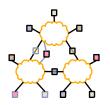

Not robust against node- or link-failures

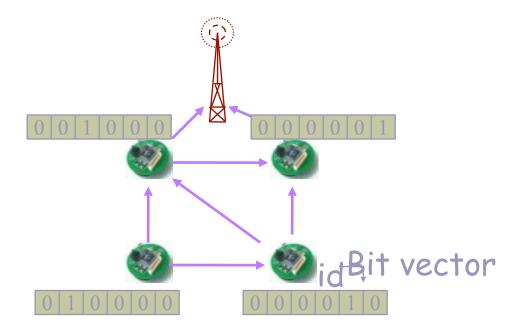

Traditional Approach

- Reliable communication
 - E.g., RMST over Directed Diffusion [Stann'03]
- High resource overhead
 - 3x more energy consumption
 - 3x more latency
 - 25% less channel capacity
- Not suitable for resource constrained sensors

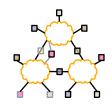
Exploiting Broadcast Medium

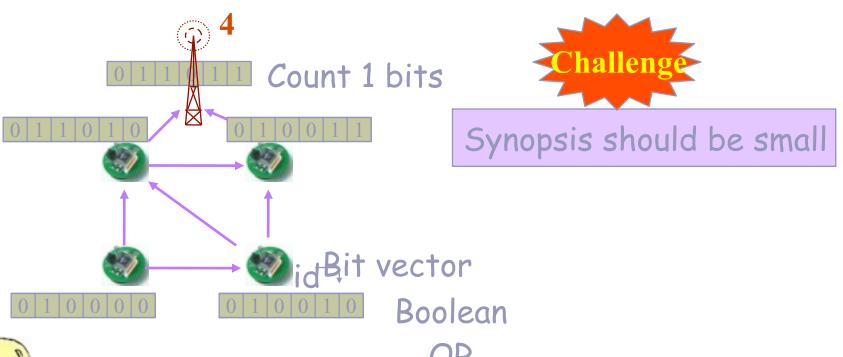
- ✓ Robust multi-path
- ✓ Energy-efficient



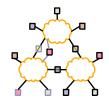


Challenge: order and duplicate insensitivity (ODI)

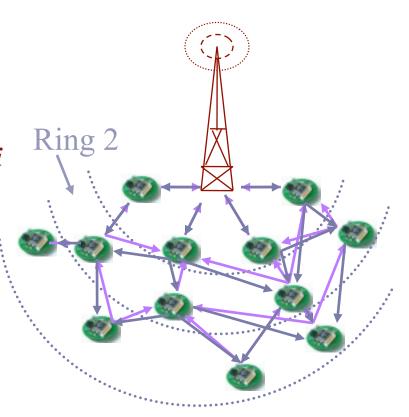

A Naïve ODI Algorithm

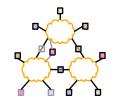

Goal: <u>count</u> the live sensors in the network

Synopsis Diffusion (SenSys'04)


Goal: <u>count</u> the live sensors in the network

Approximate COUNT algorithm: logarithmic size bit vector


Synopsis Diffusion over Rings

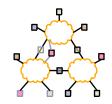

• A node is in ring i if it is i hops away from the basestation

• Broadcasts by nodes in ring i are received by neighbors in ring i-1

 Each node transmits once = optimal energy cost (same as Tree)

Evaluation

Approximate COUNT with Synopsis Diffusion



Scheme	Energy		
Tree	41.8 mJ		
Syn. Diff.	42.1 mJ		

Per node energy

Almost as energy efficient as Tree

Next Lecture

- Data center networks
- Required readings
 - PortLand: A Scalable Fault-Tolerant Layer 2
 Data Center Network Fabric [Sigcomm09]
 - Safe and Effective Fine-grained TCP Retransmissions for Datacenter Communication [Sigcomm09]