
CE693: Adv. Computer Networking

L-4 TCP

Acknowledgments: Lecture slides are from the graduate level Computer
Networks course thought by Srinivasan Seshan at CMU. When slides are
obtained from other sources, a a reference will be noted on the bottom of
that slide. A full list of references is provided on the last slide.

2

TCP Congestion Control

• Congestion Control
• RED

• Assigned Reading
• [FJ93] Random Early Detection Gateways for

Congestion Avoidance
• [TFRC] Equation-Based Congestion Control for

Unicast Applications

3

Introduction to TCP
• Communication abstraction:

• Reliable
• Ordered
• Point-to-point
• Byte-stream
• Full duplex
• Flow and congestion controlled

• Protocol implemented entirely at the ends
• Fate sharing

• Sliding window with cumulative acks
• Ack field contains last in-order packet received
• Duplicate acks sent when out-of-order packet received

Key Things You Should Know Already

• Port numbers
• TCP/UDP checksum
• Sliding window flow control

• Sequence numbers
• TCP connection setup
• TCP reliability

• Timeout
• Data-driven

4

Overview

• TCP congestion control

• TFRC

• Queuing disciplines

• TCP and queues

• RED

5

6

TCP Congestion Control
• Motivated by ARPANET congestion collapse
• Underlying design principle: packet conservation

• At equilibrium, inject packet into network only when one
is removed

• Basis for stability of physical systems
• Why was this not working?

• Connection doesn’t reach equilibrium
• Spurious retransmissions
• Resource limitations prevent equilibrium

7

TCP Congestion Control - Solutions

• Reaching equilibrium
• Slow start

• Eliminates spurious retransmissions
• Accurate RTO estimation
• Fast retransmit

• Adapting to resource availability
• Congestion avoidance

8

TCP Congestion Control

• Changes to TCP motivated by
ARPANET congestion collapse

• Basic principles
• AIMD
• Packet conservation
• Reaching steady state quickly
• ACK clocking

9

AIMD

• Distributed, fair and efficient
• Packet loss is seen as sign of congestion and

results in a multiplicative rate decrease
• Factor of 2

• TCP periodically probes for available bandwidth
by increasing its rate

Time

Rate

10

Implementation Issue
• Operating system timers are very coarse – how to pace

packets out smoothly?
• Implemented using a congestion window that limits how

much data can be in the network.
• TCP also keeps track of how much data is in transit

• Data can only be sent when the amount of outstanding
data is less than the congestion window.
• The amount of outstanding data is increased on a “send” and

decreased on “ack”
• (last sent – last acked) < congestion window

• Window limited by both congestion and buffering
• Sender’s maximum window = Min (advertised window, cwnd)

11

Congestion Avoidance

• If loss occurs when cwnd = W
• Network can handle 0.5W ~ W segments
• Set cwnd to 0.5W (multiplicative decrease)

• Upon receiving ACK
• Increase cwnd by (1 packet)/cwnd

• What is 1 packet? 1 MSS worth of bytes
• After cwnd packets have passed by

approximately increase of 1 MSS

• Implements AIMD

Congestion Avoidance Sequence Plot

12

Time

Sequence No

Packets

Acks

13

Congestion Avoidance Behavior

Time

Congestion
Window

Packet loss
+ Timeout

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

14

Packet Conservation

• At equilibrium, inject packet into network
only when one is removed
• Sliding window and not rate controlled
• But still need to avoid sending burst of packets
 would overflow links

• Need to carefully pace out packets
• Helps provide stability

• Need to eliminate spurious retransmissions
• Accurate RTO estimation
• Better loss recovery techniques (e.g. fast

retransmit)

15

TCP Packet Pacing
• Congestion window helps to “pace” the

transmission of data packets
• In steady state, a packet is sent when an ack is

received
• Data transmission remains smooth, once it is smooth
• Self-clocking behavior

Pr

Pb

ArAb

ReceiverSender

As

Aside: Packet Pair
• What would happen if a source transmitted a pair of

packets back-to-back?

• FIFO scheduling
• Unlikely that another flows packet will get inserted in-

between
• Packets sent back-to-back are likely to be queued/

forwarded back-to-back
• Spacing will reflect link bandwidth

• Fair queuing
• Router alternates between different flows
• Bottleneck router will separate packet pair at exactly fair

share rate

• Basis for many measurement techniques 16

17

Reaching Steady State

• Doing AIMD is fine in steady state but
slow…

• How does TCP know what is a good initial
rate to start with?
• Should work both for a Modem (10s of Kbps or

less) and for supercomputer links (10 Gbps and
growing)

• Quick initial phase to help get up to speed
(slow start)

18

Slow Start Packet Pacing

• How do we get this
clocking behavior to
start?
• Initialize cwnd = 1
• Upon receipt of every

ack, cwnd = cwnd + 1
• Implications

• Window actually
increases to W in RTT *
log2(W)

• Can overshoot window
and cause packet loss

19

Slow Start Example

1

One RTT

One pkt time

0R

2
1R

3

4
2R

5
6
7

8
3R

9
10
11

12
13

14
15

1

2 3

4 5 6 7

20

Slow Start Sequence Plot

Time

Sequence No

.

.

.

Packets

Acks

21

Return to Slow Start

• If packet is lost we lose our self clocking as
well
• Need to implement slow-start and congestion

avoidance together
• When timeout occurs set ssthresh to 0.5w

• If cwnd < ssthresh, use slow start
• Else use congestion avoidance

22

TCP Saw Tooth Behavior

Time

Congestion
Window

Initial
Slowstart

Fast
Retransmit

and Recovery

Slowstart
to pace
packets

Timeouts
may still

occur

Questions

• Current loss rates – 10% in paper

• Uniform reaction to congestion – can different
nodes do different things?
• TCP friendliness, GAIMD, etc.

• Can we use queuing delay as an indicator?
• TCP Vegas

• What about non-linear controls?

23

Overview

• TCP congestion control

• TFRC

• Queuing disciplines

• TCP and queues

• RED

24

25

Changing Workloads
• New applications are changing the way TCP is used
• 1980’s Internet

• Telnet & FTP long lived flows
• Well behaved end hosts
• Homogenous end host capabilities
• Simple symmetric routing

• 2000’s Internet
• Web & more Web large number of short xfers
• Wild west – everyone is playing games to get bandwidth
• Cell phones and toasters on the Internet
• Policy routing

• How to accommodate new applications?

26

TCP Friendliness
• What does it mean to be TCP friendly?

• TCP is not going away
• Any new congestion control must compete with TCP

flows
• Should not clobber TCP flows and grab bulk of link
• Should also be able to hold its own, i.e. grab its fair share, or it

will never become popular

• How is this quantified/shown?
• Has evolved into evaluating loss/throughput behavior
• But is this really true?

27

TCP Friendly Rate Control (TFRC)

• Equation 1 – real TCP response

• 1st term corresponds to simple derivation
• 2nd term corresponds to more complicated timeout

behavior
• Is critical in situations with > 5% loss rates where

timeouts occur frequently
• Key parameters

• RTO
• RTT
• Loss rate

29

Loss Estimation
• Loss event rate vs. loss rate
• Characteristics

• Should work well in steady loss rate
• Should weight recent samples more
• Should increase only with a new loss
• Should decrease only with long period without loss

• Possible choices
• Dynamic window – loss rate over last X packets
• EWMA of interval between losses
• Weighted average of last n intervals

• Last n/2 have equal weight

32

Congestion Avoidance
• Loss interval increases in order to increase rate

• Primarily due to the transmission of new packets in
current interval

• History discounting increases interval by removing old
intervals

• .14 packets per RTT without history discounting
• .22 packets per RTT with discounting

• Much slower increase than TCP
• Decrease is also slower

• 4 – 8 RTTs to halve speed

Overview

• TCP congestion control

• TFRC

• Queuing disciplines

• TCP and queues

• RED

42

11

Queuing Disciplines

• Each router must implement some queuing
discipline

• Queuing allocates both bandwidth and
buffer space:
• Bandwidth: which packet to serve (transmit)

next
• Buffer space: which packet to drop next (when

required)
• Queuing also affects latency

12

Packet Drop Dimensions

Aggregation
Per-connection state Single class

Drop position
Head Tail

Random location

Class-based queuing

Early drop Overflow drop

13

Typical Internet Queuing
• FIFO + drop-tail

• Simplest choice
• Used widely in the Internet

• FIFO (first-in-first-out)
• Implies single class of traffic

• Drop-tail
• Arriving packets get dropped when queue is full

regardless of flow or importance
• Important distinction:

• FIFO: scheduling discipline
• Drop-tail: drop policy

14

FIFO + Drop-tail Problems

• Leaves responsibility of congestion control
to edges (e.g., TCP)

• Does not separate between different flows
• No policing: send more packets get more

service
• Synchronization: end hosts react to same

events

15

Active Queue Management

• Design active router queue management to
aid congestion control

• Why?
• Routers can distinguish between propagation

and persistent queuing delays
• Routers can decide on transient congestion,

based on workload

16

Active Queue Designs

• Modify both router and hosts
• DECbit – congestion bit in packet header

• Modify router, hosts use TCP
• Fair queuing

• Per-connection buffer allocation
• RED (Random Early Detection)

• Drop packet or set bit in packet header as soon as
congestion is starting

Overview

• TCP congestion control

• TFRC

• Queuing disciplines

• TCP and queues

• RED

33

34

TCP Performance

• Can TCP saturate a link?
• Congestion control

• Increase utilization until… link becomes
congested

• React by decreasing window by 50%
• Window is proportional to rate * RTT

• Doesn’t this mean that the network
oscillates between 50 and 100% utilization?
• Average utilization = 75%??
• No…this is *not* right!

35

TCP Congestion Control

Only W packets
may be outstanding

Rule for adjusting W
• If an ACK is received: W ← W+1/W
• If a packet is lost: W ← W/2

Source Dest

t

Window size

36

Single TCP Flow
Router without buffers

37

Summary Unbuffered Link

t

W Minimum window
for full utilization

• The router can’t fully utilize the link
• If the window is too small, link is not full
• If the link is full, next window increase causes drop
• With no buffer it still achieves 75% utilization

38

TCP Performance

• In the real world, router queues play
important role
• Window is proportional to rate * RTT

• But, RTT changes as well the window
• Window to fill links = propagation RTT *

bottleneck bandwidth
• If window is larger, packets sit in queue on

bottleneck link

39

TCP Performance
• If we have a large router queue can get 100%

utilization
• But, router queues can cause large delays

• How big does the queue need to be?
• Windows vary from W W/2

• Must make sure that link is always full
• W/2 > RTT * BW
• W = RTT * BW + Qsize
• Therefore, Qsize > RTT * BW

• Ensures 100% utilization
• Delay?

• Varies between RTT and 2 * RTT

40

Single TCP Flow
Router with large enough buffers for full link utilization

41

Summary Buffered Link

t

W

Minimum window
for full utilization

• With sufficient buffering we achieve full link utilization
• The window is always above the critical threshold
• Buffer absorbs changes in window size

• Buffer Size = Height of TCP Sawtooth
• Minimum buffer size needed is 2T*C

• This is the origin of the rule-of-thumb

Buffer

4

Example

• 10Gb/s linecard
• Requires 300Mbytes of buffering.
• Read and write 40 byte packet every 32ns.

• Memory technologies
• DRAM: require 4 devices, but too slow.
• SRAM: require 80 devices, density/power

issues, 1kW, $2000
• Problem gets harder at 40Gb/s

• Hence RLDRAM, FCRAM, etc.

5

Rule-of-thumb
• Rule-of-thumb makes sense for one flow
• Typical backbone link has > 20,000 flows
• Does the rule-of-thumb still hold?

6

If flows are synchronized

• Aggregate window has same dynamics
• Therefore buffer occupancy has same dynamics
• Rule-of-thumb still holds.

t

7

If flows are not synchronized

Probability
Distribution

B

0

Buffer Size

8

Central Limit Theorem

• CLT tells us that the more variables (Congestion
Windows of Flows) we have, the narrower the Gaussian
(Fluctuation of sum of windows)
• Width of Gaussian decreases with

• Buffer size should also decreases with

B

9

Required buffer size

Simulation

Overview

• TCP congestion control

• TFRC

• Queuing disciplines

• TCP and queues

• RED

42

18

Internet Problems

• Full queues
• Routers are forced to have have large queues

to maintain high utilizations
• TCP detects congestion from loss

• Forces network to have long standing queues in
steady-state

• Lock-out problem
• Drop-tail routers treat bursty traffic poorly
• Traffic gets synchronized easily allows a few

flows to monopolize the queue space

19

Design Objectives

• Keep throughput high and delay low
• Accommodate bursts
• Queue size should reflect ability to accept

bursts rather than steady-state queuing
• Improve TCP performance with minimal

hardware changes

20

Lock-out Problem

• Random drop
• Packet arriving when queue is full causes some

random packet to be dropped
• Drop front

• On full queue, drop packet at head of queue
• Random drop and drop front solve the lock-

out problem but not the full-queues problem

21

Full Queues Problem

• Drop packets before queue becomes full
(early drop)

• Intuition: notify senders of incipient
congestion
• Example: early random drop (ERD):

• If qlen > drop level, drop each new packet with fixed
probability p

• Does not control misbehaving users

22

Random Early Detection (RED)

• Detect incipient congestion, allow bursts
• Keep power (throughput/delay) high

• Keep average queue size low
• Assume hosts respond to lost packets

• Avoid window synchronization
• Randomly mark packets

• Avoid bias against bursty traffic
• Some protection against ill-behaved users

23

RED Algorithm

• Maintain running average of queue length
• If avgq < minth do nothing

• Low queuing, send packets through
• If avgq > maxth, drop packet

• Protection from misbehaving sources
• Else mark packet in a manner proportional

to queue length
• Notify sources of incipient congestion

24

RED Operation

Min threshMax thresh

Average Queue Length

minth maxth

maxP

1.0

Avg queue length

P(drop)

25

RED Algorithm

• Maintain running average of queue length
• Byte mode vs. packet mode – why?

• For each packet arrival
• Calculate average queue size (avg)
• If minth ≤ avgq < maxth

• Calculate probability Pa

• With probability Pa

• Mark the arriving packet

• Else if maxth ≤ avg
• Mark the arriving packet

26

Queue Estimation

• Standard EWMA: avgq = (1-wq) avgq + wqqlen

• Upper bound on wq depends on minth

• Want to ignore transient congestion
• Can calculate the queue average if a burst arrives

• Set wq such that certain burst size does not exceed minth

• Lower bound on wq to detect congestion relatively
quickly

• Typical wq = 0.002

27

Thresholds

• minth determined by the utilization
requirement
• Tradeoff between queuing delay and utilization

• Relationship between maxth and minth
• Want to ensure that feedback has enough time

to make difference in load
• Depends on average queue increase in one

RTT
• Paper suggest ratio of 2

• Current rule of thumb is factor of 3

28

Packet Marking

• maxp is reflective of typical loss rates
• Paper uses 0.02

• 0.1 is more realistic value
• If network needs marking of 20-30% then

need to buy a better link!
• Gentle variant of RED (recommended)

• Vary drop rate from maxp to 1 as the avgq
varies from maxth to 2* maxth

29

Extending RED for Flow Isolation

• Problem: what to do with non-cooperative
flows?

• Fair queuing achieves isolation using per-
flow state – expensive at backbone routers
• How can we isolate unresponsive flows without

per-flow state?
• RED penalty box

• Monitor history for packet drops, identify flows
that use disproportionate bandwidth

• Isolate and punish those flows

