
CE693: Adv. Computer Networking

L-2 Design Considerations
Fall 1391

Acknowledgments: Lecture slides are from the graduate level Computer
Networks course thought by Srinivasan Seshan at CMU. When slides are
obtained from other sources, a a reference will be noted on the bottom of that
slide. A full list of references is provided on the last slide.

3

Lecture: Design Considerations

• How to determine split of functionality
• Across protocol layers
• Across network nodes

• Assigned Reading
• [SRC84] End-to-end Arguments in System Design
• [Cla88] Design Philosophy of the DARPA Internet

Protocols
• Optional Reading

• [CT90] Architectural Considerations for a New
Generation of Protocols

• [Clark02] Tussle in Cyberspace: Defining Tomorrow’s
Internet

4

Outline

• Design principles in internetworks

• IP design

5

Goals [Clark88]

0Connect existing networks
initially ARPANET and ARPA packet radio network

1.Survivability
ensure communication service even in the presence of

network and router failures
2.Support multiple types of services
3.Must accommodate a variety of networks
4.Allow distributed management
5.Allow host attachment with a low level of effort
6.Be cost effective
7.Allow resource accountability

6

Goal 0: Connecting Networks

• How to internetwork various network
technologies
• ARPANET, X.25 networks, LANs, satellite networks,

packet networks, serial links…
• Many differences between networks

• Address formats
• Performance – bandwidth/latency
• Packet size
• Loss rate/pattern/handling
• Routing

7

Challenge 1: Address Formats

7

Challenge 1: Address Formats

• Map one address format to another?

7

Challenge 1: Address Formats

• Map one address format to another?
•Bad idea many translations needed

7

Challenge 1: Address Formats

• Map one address format to another?
•Bad idea many translations needed

• Provide one common format

7

Challenge 1: Address Formats

• Map one address format to another?
•Bad idea many translations needed

• Provide one common format
•Map lower level addresses to common format

8

Challenge 2: Different Packet Sizes

• Define a maximum packet size over all
networks?
•Either inefficient or high threshold to support

• Implement fragmentation/re-assembly
•Who is doing fragmentation?
•Who is doing re-assembly?

9

Gateway Alternatives

• Translation
• Difficulty in dealing with different features supported

by networks
• Scales poorly with number of network types (N^2

conversions)
• Standardization

• “IP over everything” (Design Principle 1)
• Minimal assumptions about network
• Hourglass design

IP Standardization

• Minimum set of assumptions for underlying net
• Minimum packet size
• Reasonable delivery odds, but not 100%
• Some form of addressing unless point to point

• Important non-assumptions:
• Perfect reliability
• Broadcast, multicast
• Priority handling of traffic
• Internal knowledge of delays, speeds, failures, etc

• Also achieves Goal 3: Supporting Varieties of Networks

10

IP Hourglass

• Need to interconnect many
existing networks

• Hide underlying technology
from applications

• Decisions:
• Network provides minimal

functionality
• “Narrow waist”

Tradeoff: No assumptions, no guarantees.

Technology

Applications
 email WWW phone...

SMTP HTTP RTP...

TCP UDP…

IP

 ethernet PPP…

CSMA async sonet...

 copper fiber radio...

11

12

IP Layering (Principle 2)

• Relatively simple

Router RouterHost Host

Application

Transport

Network

Link

Survivability

• If network disrupted and reconfigured
• Communicating entities should not care!
• No higher-level state reconfiguration

• How to achieve such reliability?
• Where can communication state be stored?

13

Network Host

Failure handing Replication “Fate sharing”

Net Engineering Tough Simple

Switches Maintain state Stateless

Host trust Less More

Principle 3: Fate Sharing

• Lose state information for an entity if and only if the entity
itself is lost.

• Examples:
• OK to lose TCP state if one endpoint crashes

• NOT okay to lose if an intermediate router reboots
• Is this still true in today’s network?

• NATs and firewalls

• Survivability compromise: Heterogeneous network
less information available to end hosts and Internet level
recovery mechanisms

Connection
State StateNo State

14

15

Principle 4: Soft-state

• Soft-state
• Announce state
• Refresh state
• Timeout state

• Penalty for timeout – poor performance
• Robust way to identify communication flows
• Helps survivability

16

Principle 5: End-to-End Argument

• Deals with where to place functionality
• Inside the network (in switching elements)
• At the edges

• Argument
• There are functions that can only be correctly

implemented by the endpoints – do not try to
completely implement these elsewhere

• Guideline not a law

17

Example: Reliable File Transfer

OS

Appl.

OS

Appl.

Host A Host B

17

Example: Reliable File Transfer

OS

Appl.

OS

Appl.

Host A Host B

17

Example: Reliable File Transfer

OS

Appl.

OS

Appl.

Host A Host B

17

Example: Reliable File Transfer

OS

Appl.

OS

Appl.

Host A Host B

17

Example: Reliable File Transfer

OS

Appl.

OS

Appl.

Host A Host B

17

Example: Reliable File Transfer

OS

Appl.

OS

Appl.

Host A Host B

17

Example: Reliable File Transfer

• Solution 1: make each step reliable, and
then concatenate them

OS

Appl.

OS

Appl.

Host A Host B

17

Example: Reliable File Transfer

• Solution 1: make each step reliable, and
then concatenate them

• Solution 2: end-to-end check and retry

OS

Appl.

OS

Appl.

Host A Host B

17

Example: Reliable File Transfer

• Solution 1: make each step reliable, and
then concatenate them

• Solution 2: end-to-end check and retry

OS

Appl.

OS

Appl.

Host A Host B

17

Example: Reliable File Transfer

• Solution 1: make each step reliable, and
then concatenate them

• Solution 2: end-to-end check and retry

OS

Appl.

OS

Appl.

Host A Host B

OK

E2E Example: File Transfer

18

E2E Example: File Transfer

• Even if network guaranteed reliable delivery

18

E2E Example: File Transfer

• Even if network guaranteed reliable delivery
• Need to provide end-to-end checks

18

E2E Example: File Transfer

• Even if network guaranteed reliable delivery
• Need to provide end-to-end checks
• E.g., network card may malfunction

18

E2E Example: File Transfer

• Even if network guaranteed reliable delivery
• Need to provide end-to-end checks
• E.g., network card may malfunction
• The receiver has to do the check anyway!

18

E2E Example: File Transfer

• Even if network guaranteed reliable delivery
• Need to provide end-to-end checks
• E.g., network card may malfunction
• The receiver has to do the check anyway!

• Full functionality can only be entirely implemented at
application layer; no need for reliability from lower layers

18

E2E Example: File Transfer

• Even if network guaranteed reliable delivery
• Need to provide end-to-end checks
• E.g., network card may malfunction
• The receiver has to do the check anyway!

• Full functionality can only be entirely implemented at
application layer; no need for reliability from lower layers

18

E2E Example: File Transfer

• Even if network guaranteed reliable delivery
• Need to provide end-to-end checks
• E.g., network card may malfunction
• The receiver has to do the check anyway!

• Full functionality can only be entirely implemented at
application layer; no need for reliability from lower layers

• Does FTP look like E2E file transfer?

18

E2E Example: File Transfer

• Even if network guaranteed reliable delivery
• Need to provide end-to-end checks
• E.g., network card may malfunction
• The receiver has to do the check anyway!

• Full functionality can only be entirely implemented at
application layer; no need for reliability from lower layers

• Does FTP look like E2E file transfer?
• TCP provides reliability between kernels not disks

18

E2E Example: File Transfer

• Even if network guaranteed reliable delivery
• Need to provide end-to-end checks
• E.g., network card may malfunction
• The receiver has to do the check anyway!

• Full functionality can only be entirely implemented at
application layer; no need for reliability from lower layers

• Does FTP look like E2E file transfer?
• TCP provides reliability between kernels not disks

18

E2E Example: File Transfer

• Even if network guaranteed reliable delivery
• Need to provide end-to-end checks
• E.g., network card may malfunction
• The receiver has to do the check anyway!

• Full functionality can only be entirely implemented at
application layer; no need for reliability from lower layers

• Does FTP look like E2E file transfer?
• TCP provides reliability between kernels not disks

• Is there any need to implement reliability at lower layers?

18

19

Discussion

• Yes, but only to improve performance
• If network is highly unreliable

•Adding some level of reliability helps performance,
not correctness

•Don’t try to achieve perfect reliability!
• Implementing a functionality at a lower level should
have minimum performance impact on the
applications that do not use the functionality

20

Examples

• What should be done at the end points, and
what by the network?
• Reliable/sequenced delivery?
• Addressing/routing?
• Security?
• What about Ethernet collision detection?
• Multicast?
• Real-time guarantees?

Goal 2: Types of Service
• Principle 6: network layer provides one simple service: best effort

datagram (packet) delivery
• All packets are treated the same

• Relatively simple core network elements
• Building block from which other services (such as reliable data

stream) can be built
• Contributes to scalability of network

• No QoS support assumed from below
• In fact, some underlying nets only supported reliable delivery

• Made Internet datagram service less useful!
• Hard to implement without network support
• QoS is an ongoing debate…

21

Types of Service

• TCP vs. UDP
• Elastic apps that need reliability: remote login or email
• Inelastic, loss-tolerant apps: real-time voice or video
• Others in between, or with stronger requirements
• Biggest cause of delay variation: reliable delivery

• Today’s net: ~100ms RTT
• Reliable delivery can add seconds.

• Original Internet model: “TCP/IP” one layer
• First app was remote login…
• But then came debugging, voice, etc.
• These differences caused the layer split, added UDP

22

23

Goal 4: Decentralization

• Principle 7: Each network owned and managed
separately
• Will see this in BGP routing especially

• Principle 7’: Be conservative in what you send
and liberal in what you accept
• Unwritten rule

• Especially useful since many protocol
specifications are ambiguous

• E.g. TCP will accept and ignore bogus
acknowledgements

24

The “Other” goals

5. Attaching a host
• Host must implement hard part transport services

• Not too bad

6. Cost effectiveness
• Packet overhead less important by the year
• Packet loss rates low
• Economies of scale won out
• Internet cheaper than most dedicated networks

• But…

25

7. Accountability

• Huge problem

• Accounting
• Billing? (mostly flat-rate. But phones have become that way also -

people like it!)
• Inter-ISP payments

• Hornet’s nest. Complicated. Political. Hard.

• Accountability and security
• Huge problem.
• Worms, viruses, etc.

• Partly a host problem. But hosts very trusted.
• Authentication

• Purely optional. Many philosophical issues of privacy vs. security.
• Greedy sources aren’t handled well

26

Other IP Design Weaknesses

• Weak administration and management tools
• Incremental deployment difficult at times

• Result of no centralized control
• No more “flag” days
• Are active networks the solution?

Changes Over Time

• Developed in simpler times
• Common goals, consistent vision

• With success came multiple goals – examples:
• ISPs must talk to provide connectivity but are fierce

competitors
• Privacy of users vs. government’s need to monitor
• User’s desire to exchange files vs. copyright owners

• Must deal with the tussle between concerns in
design

27

New Principles?

• Design for variation in outcome
• Allow design to be flexible to different uses/results

• Isolate tussles
• QoS designs uses separate ToS bits instead of

overloading other parts of packet like port number
• Separate QoS decisions from application/protocol design

• Provide choice allow all parties to make choices on
interactions
• Creates competition
• Fear between providers helps shape the tussle

28

32

Summary: Internet Architecture

• Packet-switched
datagram network

• IP is the “compatibility
layer”
• Hourglass architecture
• All hosts and routers run IP

• Stateless architecture
• no per flow state inside

network

IP

TCP UDP

ATM

Satellite

Ethernet

33

Summary: Minimalist Approach

• Dumb network
• IP provide minimal functionalities to support connectivity

• Addressing, forwarding, routing

• Smart end system
• Transport layer or application performs more sophisticated

functionalities
• Flow control, error control, congestion control

• Advantages
• Accommodate heterogeneous technologies (Ethernet, modem,

satellite, wireless)
• Support diverse applications (telnet, ftp, Web, X windows)
• Decentralized network administration

Summary

• Successes: IP on
everything!

• Drawbacks…

but perhaps they’re totally
worth it in the context of
the original Internet. Might
not have worked without
them!

“This set of goals might seem to be nothing
more than a checklist of all the desirable
network features. It is important to
understand that these goals are in order of
importance, and an entirely different
network architecture would result if the
order were changed.”

34

5

Goals [Clark88]

0Connect existing networks
initially ARPANET and ARPA packet radio network

1.Survivability
ensure communication service even in the presence of

network and router failures
2.Support multiple types of services
3.Must accommodate a variety of networks
4.Allow distributed management
5.Allow host attachment with a low level of effort
6.Be cost effective
7.Allow resource accountability

35

Outline

• Design principles in internetworks

• IP design

36

Fragmentation

• IP packets can be 64KB
• Different link-layers have different MTUs
• Split IP packet into multiple fragments

• IP header on each fragment
• Various fields in header to help process
• Intermediate router may fragment as needed

• Where to do reassembly?
• End nodes – avoids unnecessary work
• Dangerous to do at intermediate nodes

• Buffer space
• Multiple paths through network

37

Fragmentation is Harmful

• Uses resources poorly
• Forwarding costs per packet
• Best if we can send large chunks of data
• Worst case: packet just bigger than MTU

• Poor end-to-end performance
• Loss of a fragment

• Reassembly is hard
• Buffering constraints

38

Path MTU Discovery

• Hosts dynamically discover minimum MTU of path
• Algorithm:

• Initialize MTU to MTU for first hop
• Send datagrams with Don’t Fragment bit set
• If ICMP “pkt too big” msg, decrease MTU

• What happens if path changes?
• Periodically (>5mins, or >1min after previous increase),

increase MTU
• Some routers will return proper MTU
• MTU values cached in routing table

39

IP Address Problem (1991)

• Address space depletion
• In danger of running out of classes A and B

• Why?
• Class C too small for most domains
• Very few class A – IANA (Internet Assigned

Numbers Authority) very careful about giving
• Class B – greatest problem

• Sparsely populated – but people refuse to give it back

41

IPv4 Routing Problems

• Core router forwarding tables were growing
large
• Class A: 128 networks, 16M hosts
• Class B: 16K networks, 64K hosts
• Class C: 2M networks, 256 hosts

• 32 bits does not give enough space encode
network location information inside address –
i.e., create a structured hierarchy

42

Solution 1 – CIDR

• Assign multiple class C addresses
• Assign consecutive blocks
• RFC1338 – Classless Inter-Domain Routing

(CIDR)

43

Classless Inter-Domain Routing

• Do not use classes to determine network ID
• Assign any range of addresses to network

• Use common part of address as network number
• e.g., addresses 192.4.16 - 196.4.31 have the first

20 bits in common. Thus, we use this as the
network number

• netmask is /20, /xx is valid for almost any xx
• Enables more efficient usage of address

space (and router tables)

44

Solution 2 - NAT

• Network Address Translation (NAT)
• Alternate solution to address space
• Sits between your network and the Internet
• Translates local network layer addresses to

global IP addresses
• Has a pool of global IP addresses (less than

number of hosts on your network)

45

NAT Illustration

Global
Internet

Private
Network

Pool of global IP addresses

•Operation: Source (S) wants to talk to Destination (D):
•Create Sg-Sp mapping
•Replace Sp with Sg for outgoing packets
•Replace Sg with Sp for incoming packets

•D & S can be just IP addresses or IP addresses + port #’s

PG

Dg Sp DataNAT

Destination Source

Dg Sg Data

46

Solution 3 - IPv6

• Scale – addresses are 128bit
• Header size?

• Simplification
• Removes infrequently used parts of header
• 40byte fixed size vs. 20+ byte variable

• IPv6 removes checksum
• Relies on upper layer protocols to provide integrity

• IPv6 eliminates fragmentation
• Requires path MTU discovery
• Requires 1280 byte MTU

47

IPv6 Changes

• TOS replaced with traffic class octet
• Flow

• Help soft state systems
• Maps well onto TCP connection or stream of UDP packets

on host-port pair
• Easy configuration

• Provides auto-configuration using hardware MAC address
to provide unique base

• Additional requirements
• Support for security
• Support for mobility

49

Summary: IP Design

• Relatively simple design
• Some parts not so useful (TOS, options)

• Beginning to show age
• Unclear what the solution will be

