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Abstract

In this paper, we study the problem of finding the shortest path between two points inside a simple polygon such that there is at
least one point on the path from which a query point is visible. We provide an algorithm which preprocesses the input in O(n2

+nK )

time and space and provides logarithmic query time. The input polygon has n vertices and K is a parameter dependent on the input
polygon which is O(n2) in the worst case but is much smaller for most polygons. The preprocessing algorithm sweeps an angular
interval around every reflex vertex of the polygon to store the optimal contact points between the shortest paths and the windows
separating the visibility polygons of the query points from the source and the destination.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Computational geometry; Shortest path; Visibility

1. Introduction

In a number of applications, it is necessary for a moving object to have direct visibility from some viewpoint during
its motion [1]. Examples are point-to-point communication, military applications, and moving guards. This imposes
a constraint called visibility constraint on the well-known problem of finding the shortest path between two points.
In the shortest path problem with single-point visibility constraint, the goal is to find the shortest path between two
points such that there is at least one point on the path from which a given viewpoint is visible. This problem has
been studied in [14] for various geometric domains including simple polygons, polygons with holes, and polyhedral
surfaces. A more general constraint is studied in [13] where the path is required to meet a target polygon (not just a
visibility polygon) where an O(n) algorithm is given for the problem. The same problem is solved in [12] for the case
of polygonal domains resulting in an O(n log n) algorithm. Extending the problem to visit multiple regions relates the
problem to the well-known problems of TSP with neighborhoods [5,6], watchman route problem [2,20], zookeeper’s
problem [3,20], and safari route problem [19,21]. Dror et al. [4] have presented an algorithm for the problem of finding
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the shortest path that visits k given convex polygons in a pre-specified order. Also, they have shown that the problem
is NP-hard for the case of non-convex polygons.

In this paper, we study the query-point version of the visibility constraint, that is, finding the shortest path between
two given points s and t inside a simple polygon P with n vertices, such that there is at least one point on the path from
which a given query point q is visible. The given algorithm preprocesses the input in O(n2

+nK ) time, building a data
structure of the same size that answers the queries in logarithmic time and space where K is a parameter dependent
on the input polygon which is O(n2) in the worst case, but much smaller for most input polygons.

A simpler form of the problem is studied in [15] in which the goal is to find the shortest path from s to view q
(without going to a destination point). The given algorithm takes a similar approach to the one taken in this paper, that
is preprocessing the input using a radial sweep process around reflex vertices of P . The preprocess takes O(n2) time
and space and is capable of answering the queries in O(log n) time. The result is improved by Knauer and Rote to
O(n log n) preprocessing time and O(n) space achieving the same query time [17]. Their approach is different from
that of [15] and uses data structures for ray shooting queries [10] and lowest common ancestor queries [9] to compute
and search the funnel structure made by the shortest path tree of s.

The main idea of the algorithm given in this work is to consider the segments inside P that can be considered as a
window of the visibility polygon of a possible query point (a window is an edge of a visibility polygon which is not
part of the boundary of the input polygon). If such a window separates both s and t from the visibility polygon of the
query point, then the optimal path must touch a point on that window and reflect back to the destination. The problem
is to find the optimal contact point between the optimal path and the window. To answer the queries efficiently, we
preprocess the input using a radial sweep around each reflex vertex of the polygon to partition the windows around the
reflex vertex to a number of sets such that knowing the set the query window belongs to, one can compute the optimal
contact point in constant time. To find the desired partition, we study the behavior of the optimal contact point over a
rotating sweep window.

The problem will be stated more elaborately in Section 2. The algorithm relies on the notion of funnel defined
in [7]. In Section 3 we study some properties of the funnel related to the problem under considerations. Finally, the
preprocessing algorithm which uses a radial sweep is presented and analyzed in Section 4.

2. Problem definition

We use the following notation throughout the paper:

• Vx : the visibility polygon of a point x ∈ P
• π(x, y): the shortest path between two points x and y inside P
• d(x, y): the length of π(x, y)

• |xy|: the length of the segment xy
• SPT(x): the shortest path tree from the source x [7]
• SPM(x): the shortest path map of P with source x [7].

In this problem, two points s and t are given inside a simple polygon P . The goal is to preprocess the input to answer
queries of this type: given a query point q ∈ P , find the shortest path between s and t in P , such that there exists at
least one point on the path from which q is visible. In other words, the shortest path between s and t that should have
non-empty intersection with Vq . We call such a path, a q-visible path. Note that since P is a simple polygon, it can be
verified that a q-visible path is unique [13]. Removing Vq from P yields in a number of disconnected regions we call
invisible regions. Each invisible region has exactly one edge in common with Vq , called a window.

Since the query can be answered in O(n) time without the preprocessing [13], our goal is to find a logarithmic
query time. Since the complexity of the output path may be O(n), we define two types of queries: one to find out the
shortest distance, and another to report the shortest path. We answer the first type of queries in logarithmic time, and
the second type in O(L + log n), where L is the complexity of the optimal path. Below, we consider the first type of
query and will provide comments on the second type when necessary.

The following cases may occur for a query point q:

(1) At least one of s and t is visible from q . In this case, the shortest path between s and t is the answer.
(2) The points s and t are in two distinct invisible regions (i.e., are separated from Vq by two distinct windows). Again

in this case, the shortest path between s and t is the answer.
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Fig. 1. Two funnels over the window ab. The segment zt
2zs

1 is I13. The shaded part is Cell43.

(3) Both s and t are in the same invisible region separated from Vq by a window w. In this case, the q-visible path
from s to t touches w in exactly one point c(w) [13]. (This comes from the uniqueness of shortest paths in simple
polygons). We call this point the optimal contact point of the window w. Obviously, the two sub-paths from s to
c(w) and from c(w) to t are regular shortest paths in P . So, c(w) is the point on w such that d(s, c(w))+d(t, c(w))

is minimum.

Detecting whether any of the first two cases has been occurred is easy and can be done by finding the window
separating s and t from Vq . The window separating s (resp. t) from Vq is specified by the last vertex of the shortest
path from s (resp. t) to q . Thus, having computed the shortest path maps during the preprocessing phase, we can find
the window w in O(log n) time using a standard point-location algorithm [16]. In the first two cases, we just have to
report the shortest Euclidean distance from s to q , which is possible in O(log n) time provided that the SPM of s has
been computed. The path itself can be reported in additional O(L) time where L is the complexity of the path.

In the third case, the goal is to find c(w) on the window w separating both s and t from Vq . This task is more
complicated, and will be discussed in the rest of the paper. Section 3 shows how to find c(w) on a given window w.
Then in Section 4 we show how to preprocess the input to efficiently handle the query case, i.e., where w is computed
upon receiving the query point q .

3. Characterizing the optimal contact point

In this section, we show how the optimal contact point c(w) can be characterized on a given window w of P . Recall
that c(w) is the point on w such that d(s, c(w)) + d(t, c(w)) is minimum. The method is to partition w into intervals,
such that the combinatorial structure of the shortest paths from s and t to all points on an interval is the same. This
way, we can find the point on each interval that has the minimum total distance to s and t . Among all these points,
c(w) is the one with minimum total distance. To find the mentioned partition, we use the notion of funnel [7] which is
the basic structure in study of the shortest paths in simple polygons.

Assume a and b to be the endpoints of a window w. We define two funnels over w with respect to s and t . We
first give the definitions corresponding to the point s. Define the funnel Fs(w) as π(r, a) ∪ π(r, b) where r is the last
vertex common between the two paths π(s, a) and π(s, b) when considered from s to a and b respectively. We assume
that the vertices on this funnel are named a = u0, u1, . . . , ums , ums+1 = b in the ordered traversal from a to b. The
region enclosed between Fs(w) and w can be decomposed into triangles by extending the edges of Fs(w) to intersect
w (Fig. 1). Assume the extension of the edge ui ui+1(0 ≤ i ≤ ms) intersects w in zs

i (hence, zs
0 = a and zs

ms+1 = b).
The funnel Ft (w) is defined similarly and is assumed to have the sequence of vertices a = v0, v1, . . . , vmt +1 = b and
the extension of the edge v jv j+1 (0 ≤ j ≤ mt ) intersects w in zt

j . We drop the parameter w from Fs(w) and Ft (w)

whenever the window over which the funnels are defined is clear from the context. Since there are many symbols
in this paper having a window as parameter, we omit the parameter from those symbols too when it can be clearly
understood.

The set of segments {zs
i−1zs

i } partition w into intervals with respect to the combinatorial structure of the shortest
paths from s to the points on w. More precisely, the shortest path from s to any point on a segment zs

i−1zs
i passes

through ui as the last vertex. The same property holds for the set of segments {zt
j−1zt

j } with respect to t . Now consider
the set of intervals on w obtained by overlapping these two sets of segments. The intersection of zs

i−1zs
i and zt

j−1zt
j

defines an interval Ii j (w) such that for any point x ∈ Ii j (w), the last vertex of π(s, x) is ui and the last vertex of
π(t, x) is v j .
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Fig. 2. Computing ci j (w) — the bold segment is Ii j and Ref i j is the intersection point between ui v j and the horizontal line. The point labeled by
c is ci j . In case (a), ci j is the same as Ref i j while in case (b), ci j is the right end of Ii j which is closer to Ref i j .

Fig. 3. Characterizing c(w) — The point ci j is the same as Ref i j while ci, j+1 is the left endpoint of Ii, j+1. In this case, c(w) = ci j (w).

Define ci j (w) as the point on Ii j (w) with minimum total distance to s and t . Since all points on Ii j has ui and v j
as the last vertices along shortest paths from s and t respectively, ci j is the point on Ii j such that |ui ci j | + |ci jv j | is
minimum. To find ci j , let ` be the line supporting w, and v j be v j reflected about `. Define Ref i j (w) as the intersection
of the segment uiv j and `. If Ref i j lies inside Ii j , then ci j is the same as Ref i j , otherwise, it is the endpoint of Ii j
which is closer to Ref i j (Fig. 2).

Among the set of points {ci j (w)| for all intervals Ii j (w)} one has the minimum total distance to s and t which is
the optimal contact point c(w). The following lemma uses properties of funnels to show at most one interval satisfies
the property ci j = Ref i j .

Lemma 3.1. For an arbitrary window w = ab, if there exists a pair of vertices (ui , v j ) such that ci j = Ref i j ∈ Ii j ,
then for any interval Ii ′ j ′ 6= Ii j , Ref i ′ j ′ 6∈ Ii ′ j ′ . Furthermore, if Ii ′ j ′ is closer to (farther from) a than Ii j , then ci ′ j ′ is
the endpoint of Ii ′ j ′ farther from (closer to) a.

Proof. Assume Ii j is not the farthest interval from a and consider the one of its two adjacent intervals which is farther
from a. This interval is either Ii, j+1 or Ii+1, j . For the first case, let ui be ui reflected about w and ` be the line passing
through v j and v j+1. We name the half-plane defined by ` containing a (resp. b) as Ha (resp. Hb). It easy to see that
ui ∈ Ha (because ci j ∈ Ii j is in Ha , by assumption). Since v j+1 ∈ `, Ref i, j+1 is in Ha , so ci, j+1 is the endpoint
of Ii, j+1 closer to a (which is zt

j in this case). This property holds for Ii+1, j interval too. So, the interval adjacent to
Ii j and farther from a has its optimal point at its endpoint closer to a. Similar argument yields to the property for the
interval adjacent to Ii j and closer to a that has its optimal point at its endpoint farther from a.

Now consider an interval Ii ′ j ′ with its endpoint closer to a as the optimal point. Without loss of generality, assume
Ii ′, j ′+1 be its neighbor farther from a. Similar argument as above can be used to verify that Ii ′, j ′+1 has its optimal
point in its endpoint closer to a too. Using induction, we can conclude that any interval farther from Ii j has its endpoint
closer to a as its optimal point. Same argument can be used to conclude that any interval closer to Ii j has its endpoint
farther from a as its optimal point. This completes the proof of the lemma. �

Assume Ii j has the property that ci j = Ref i j and without loss of generality, assume Ii, j+1 is its adjacent
interval farther from a (Fig. 3). Furthermore, assume v j+1 is the parent of v j in SPT(t). The total distance from
ci j to s and t is D = d(s, ui ) + |ui ci j | + d(t, v j ) + |v j ci j |. The same parameter for ci, j+1 is D′

= d(s, ui ) +

|ui ci, j+1| + d(t, v j+1) + |v j+1ci, j+1|. Since v j+1 is the parent of v j , we have d(t, v j ) = d(t, v j+1) + |v jv j+1|, so
D = d(s, ui ) + |ui ci j | + d(t, v j+1) + |v jv j+1| + |v j ci j |. On the other hand, |v j+1ci, j+1| = |v jv j+1| + |v j ci, j+1|, so
D′

= d(s, ui ) + |ui ci, j+1| + d(t, v j+1) + |v jv j+1| + |v j ci, j+1|. Ignoring the common terms in D and D′, we have
D < D′, because |ui ci j | + |v j ci j | < |ui ci, j+1| + |v j ci, j+1| (which is true since ci j = Ref i j ). If we assume v j is a
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Fig. 4. The segment ab is a separating window while ac is not.

Fig. 5. (a) Two angular intervals defining windows around a reflex vertex a. (b) The single interval defining separating windows with respect to s
around a where x is the last vertex on π(s, a).

parent of v j+1, similar arguments leads to the same result. The fact that ci, j+1 lies on v jv j+1 is the key property used
in these arguments. Similar arguments and the induction used in the proof of Lemma 3.1 can be used together to prove
the following lemma which will be used in determining interval events during preprocessing.

Lemma 3.2. For an arbitrary window w = ab, if there exists a pair of vertices (ui , v j ) such that ci j = Ref i j ∈ Ii j ,
then ci j is the optimal contact point c(w). If no such pair exists, then c(w) is either a or b.

4. The preprocessing algorithm

To answer the queries efficiently, we must pre-compute the optimal contact point on all segments in P that can be
a window of a query point, so that upon receiving a query point q, we find the window separating s and t from q and
report the optimal contact point efficiently. We refer to such a segment of P as a separating window. Informally, a
separating window is a window of the visibility polygon of an arbitrary point x that separates both s and t from Vx .
For example, in Fig. 4 the segment ab is a separating window, since there exists a point (like q) invisible from s and
t , such that ab is a window of Vq that separates it from s and t , but there is no such point for the segment ac. So, ac
is not a separating window.

To simplify the specification of the set of separating windows, we first define the set of all windows separating s
from possible query points and then generalize the definition to cover both s and t . To specify the set of all windows
separating s from possible query points, we consider each reflex vertex of P and find the set of separating windows
having that vertex as an endpoint. Assume a is a reflex vertex of P . Considering all possible query points inside
P , we may have a set of windows associated with a that are defined by the rays emanating from a in two angular
intervals between the extension of each edge incident to a and the other edge (Fig. 5(a)). Not all the windows defined
by the two intervals mentioned are separating. To restrict the set to separating windows, consider x as the last internal
vertex on the shortest path π(s, a). If x lies outside both angular intervals, then there is no separating window around
a. Otherwise, assume that it lies inside the interval defined by e2 and the extension of e1 where e1 and e2 are the
edges incident to a (Fig. 5(b)). The angular interval defining the set of separating windows around a is bounded
by the extension of e1 and the ray emanating from a passing through x . We denote this set of separating windows
by Seps(a). Now it is easy to see that the set of windows separating both s and t from possible query points is
Sep(a) = Seps(a) ∩ Sept (a). Since both Seps(a) and Sept (a) are angular intervals, so is Sep(a).
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Fig. 6. The location of the optimal contact point c(wϕ) is shown by the bold curve as wϕ (dotted line) sweeps Sep(a).

Fig. 7. The curve C∗, shown as the bold curve is made up of parts of Ci j curves. Here, those curves contributed to C∗ are C23, C33, C43, and C42 in
that order.

For a reflex vertex a, we partition Sep(a) into a number of sets such that for every window w in a set, the interval
containing c(w) is the same, so the pair of last vertices on π(s, c(w)) and π(t, c(w)) is the same. Upon receiving a
query point, we first compute the corresponding window, then search the partition to find the set the window belongs
to. Knowing the set, we can find the optimal contact point in constant time.

To partition Sep(a), we use a radial sweep around a. There are two kinds of events in the sweep process: angles at
which the optimal contact point changes its interval which we call interval events, and angles at which the structure
of the funnel changes funnel events. We consider the two types of events subsequently.

4.1. Interval events

To compute and handle interval events, we need to study the behavior of the optimal contact point during a radial
sweep of Sep(a). Fig. 6 shows an example. The dotted line shows the sweep window wϕ at some instant during sweep.
As wϕ rotates around a, the optimal contact point c(wϕ) moves along the bold curve shown in the figure. To formally
define the curve, let Sep(a) be the angular interval [α, α′

] and wϕ denote the window with endpoint a and angle ϕ

(α ≤ ϕ ≤ α′). The optimal curve C∗ is defined as the set {c(wϕ)|α ≤ ϕ ≤ α′
}. As can be seen in the figure, C∗

has some changes when crossing extension segments of the funnels. We will see how these intersections define the
interval events.

Each pair of vertices (ui , v j ) defines a curve tracing Ref i j (wϕ) along the sweep. As we will see shortly, C∗ is
made up of parts of these curves. More formally, consider a pair of vertices (ui , v j ) from the two funnels Fs(wα) and
Ft (wα) respectively. Let β be the smallest of angles made by aui and av j segments and wα . Define Ci j as the set of
points {Ref i j (wϕ)|α ≤ ϕ ≤ β}. This set is a simple, continuous curve leading to the vertex making the angle β.

Now consider the sweep window wϕ , and assume the optimal contact point c lies on the interval Ii j (i.e., c = ci j ).
From Lemma 3.2 we conclude that c is the same point as Ref i j , so it lies on Ci j . To define the condition of c lying on
Ii j more precisely, we define Celli j as the intersection of the triangles 4zs

i−1ui zs
i and 4zt

j−1vi zt
i (Fig. 1). So, parts of

Ci j which are inside Celli j are parts of C∗ (Fig. 7).
The following lemma is used to show the continuous behavior of C∗ at intersections with extension

segments.
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Fig. 8. Determining interval events — there is an intersection between Ci j and the edge of Celli j bounded by v j v j+1 when the sweep window
reaches wϕ .

Lemma 4.1. Let Celli j and Celli ′ j ′ be two adjacent cells. If Ci j intersect the common boundary of the two cells at x,
then either x is a vertex of P, or x belongs to Ci ′ j ′ too.

Proof. To be adjacent to Celli j , the pair (i ′, j ′) must be one of (i, j +1), (i, j −1), (i +1, j), (i −1, j). Consider the
first case, Celli, j+1. The common boundary lies on the line ` supporting v jv j+1. Since x ∈ Ci j , it lies on the segment
uiv j where ui is the reflection of ui about ax (a is the fixed endpoint of the sweep window). The fact that x lies on
uiv j and ` at the same time leaves two possibilities: either x = v j or ui ∈ `. The first case implies x is a vertex of P .
In the second case, x is the intersection of uiv j+1 and the sweep window, so it belongs to Ci, j+1. The same argument
applies to other cases for (i ′, j ′). �

Based on the preceding discussions, the following lemma determines the structure of C∗.

Lemma 4.2. C∗ is a continuous simple curve and is constructed from concatenation of parts of Ci j curves and
segments which are parts of the edges of P.

Proof. Since C∗ is obtained from a radial sweep, it cannot intersect itself, so it is a simple curve. Suppose at some
moment during the sweep process, the optimal contact point is in Celli j . We trace the curve Ci j along the sweep
direction until we meet the boundary of the cell for the first time. Assume this happens at point x which is on the
boundary common to Celli ′ j ′ . From Lemma 4.1, Ci ′ j ′ intersects Ci j at x . This way, if we start from c(wα) and trace
the Ci j curves, changing the curve when they go outside their corresponding cell, we will have the curve C∗ except
for those parts in which a curve goes outside the polygon P (this is related to the second case in Lemma 3.2). In those
parts, the curve is substituted with the relevant portion of the boundary of P . This way, the continuity of C∗ comes
directly from the continuity of Ci j curves. �

To compute the interval events we start from the initial interval containing c(wα). When C∗ enters a cell Celli j , we
compute the edge of that cell from which the curve Ci j exits. This creates the next event at which C∗ enters the cell
adjacent to Celli j along that edge. This processed is repeated till the whole interval of Sep(a) is processed. Note that
there may be funnel events (discussed later) that are to be considered during radial sweep.

To find the edge from which the current curve (say Ci j ) exits, we must consider each edge of Celli j in turn. Without
loss of generality, assume the edge corresponding to the extension edge of v jv j+1 is considered. Define ` as the line
passing through v j and v j+1, and Circi as the circle centered at a and passing through ui (Fig. 8). As the sweep
window rotates around a, ui (ui reflected about the sweep window) moves along Circi towards ui . As stated in the
proof of Lemma 4.1, to have an intersection between Ci j and `, ui must be on `. This happens at intersections of ` and
the part of Circi between ui and the initial position of ui . Let x be such an intersection point and θ (resp. γ ) be the
angle between aui (resp. ax) and the current sweep window. Then the event corresponding to the intersection point x
occurs at angle 1

2 (θ + γ ). Since there are at most four edges bounding a cell, this computation takes constant time for
each event. Finally, we must select the event with minimum sweep angle and discard the others.

The following lemma bounds the number of interval events.



8 R. Khosravi, M. Ghodsi / Theoretical Computer Science 389 (2007) 1–11

Fig. 9. Funnel events for one of the funnels. The angular interval between ax1 and ax5 defines the set of all separating windows. The sweep starts
from ax1. Thick solid lines are the edges of P , thin solid lines are the extension segments, dotted lines show the swap window in different positions,
and the dashed line is an extension segment added after visiting ax4.

Lemma 4.3. The number of interval events is O(n2) per reflex vertex.

Proof. To provide a bound on the number of interval events, we must count the number of times C∗ crosses the
extension segments. Since C∗ is made up of parts of Ci j curves, we first check the number of times each such curve
can cross the extension segments. This is easy to check based on the method discussed to determine the interval events,
since the line ` intersects Circi in at most two points. So, each Ci j curve has a constant number of corresponding events.
Since there are O(n2) curves, the total number of interval events for a reflex vertex is O(n2). �

There are examples showing this bound is tight. Unfortunately they are hard to illustrate, so we show how to
construct such a case in Appendix. In most practical cases, the number of such events is smaller than this and is close
to n. So, we define a new parameter K which is the maximum number of interval events per reflex vertex in P and
state the running time and space of the algorithm in terms of K . We expect K to be O(n) for most polygons. Note
that in the worst case, it is possible to have a polygon with θ(n) reflex vertices each with θ(n2) interval events. The
method presented in Appendix can be used to construct this example too.

4.2. Funnel events

To define the funnel events, we consider each funnel individually. This is possible since the changes in the funnels
occur independently. We start with the funnel events corresponding to Fs . Observe that the set of separating windows
(Seps(a)) is a subset of the visibility polygon of a, Va bounded to wα and wα′ . It is easy to see that the moments
at which the sweep window passes through the vertices of Va , the structure of the funnel changes. So, for any reflex
vertex, there are at most O(n) funnel events. The problem is to update the funnel efficiently at these moments. We
assume that SPT(s) is computed previously as well SPM(s) and Va such that we may traverse the vertices of Va in
order. The key to efficient update is to start the sweep process from the separating window closest to s. According to
our notation, either wα or wα′ has this property. Here, we assume wα is the one.

Initially, we compute the funnel over wα . As the sweep window rotates around a, we may encounter a new vertex
from Va , such as p. If p is not a reflex vertex of P , the effect of this event is only the change in the edge of P on which
the non-fixed endpoint of the sweep window moves. Otherwise, we have encountered a new node in SPT(s) and this
may cause a vertex to be added to the funnel. It is possible that the newly added vertex deletes parts of the funnel too.
This happens when the parent of the added vertex in SPT(s) has another child belonging to the funnel right before the
event. For example, in Fig. 9, the initial funnel is built over ax1. New vertices are added to the funnel as the sweep
window meets the points x2 and x3. At x4, a new vertex is added with the dashed extension segment introduced and
some vertices are deleted from the funnel.
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Note that we must keep track of the last reflex vertex of Va visited. Having this, we can compute the change
that should be made to the funnel in constant time. This is possible if we store parent pointers in SPT(s). When some
vertices are deleted, observe that the deleted vertices form a subtree of the SPT, so the deletion can be done in constant
time too. Also, we must have the vertices of the initial funnel in sorted order. This is possible if we make the recursive
calls made during the DFS traversal in the shortest path algorithm sorted in some fixed direction (e.g. clockwise).
Since the funnel structure used in the algorithm is stored in a finger search tree [8], the list of vertices in the funnel
can be arranged in sorted order in linear time.

Changes to the funnel Ft are computed exactly in a similar manner. The total number of funnel events is O(n).

4.3. Analysis of the preprocessing

Summarizing the method described above, we take the following steps during the preprocessing phase:

(1) Compute SPM(s), SPT(s), SPM(t), and SPT(t)
(2) For each reflex vertex a do the following:

(a) Compute Sep(a).
(b) Compute the portion of Va bounded by Sep(a).
(c) Compute the initial funnels and the extension edges
(d) Perform the radial sweep starting from the closest separating window to s and t .

The first step can be done in O(n) time using the algorithm of [7]. Step (a) involves finding the last vertex on
π(s, a) and π(t, a) which can be done in O(log n). The visibility computation in step (b) can be done using the linear
time algorithm of [18,11]. The funnel and the extension edges in step (c) are derived directly from the SPMs in O(n)

time. Step (d) involves computing and handling both types of events which are O(n + K ) in total and needs constant
time per event. After this step, the events are obtained in sorted angular order. This leads to O(n + K ) preprocess for
each reflex vertex. The partition for the reflex vertex is of size O(n + K ) too. As there are O(n) reflex vertices, the
total preprocessing time is O(n2

+ nK ) and O(n2
+ nK ) space is needed to store the partitions.

4.4. Processing queries

Upon receiving a query, we find the windows separating s and t from the query point q in O(log n) time (by finding
the cells of SPM(s) and SPM(t) containing q). Assuming the windows are the same (say w = ab), we perform a binary
search on the partition associated with the reflex vertex a which requires O(log n) time. Associated with the partition
is the pair of vertices (ui , v j ) which are the last vertices on π(s, c(w)) and π(t, c(w)). So, finding the optimal point
c(w) takes constant time. If we need to report the shortest paths (not just the distances), we can find the shortest path
from s to c(w) appended by the path from c(w) to t which is an easy task since both shortest path maps are computed
in advance. So, we have our main result as the following:

Theorem 4.1. Given a simple polygon P with n vertices, and two points s and t inside P, we can preprocess the input
in O(n2

+ nK ) time and space so that we can find the length of the shortest path from s to t such that a query point q
is visible from at least one point of the path in O(log n), where K is the maximum number of interval events per reflex
vertex which is O(n2) in the worst case. The path itself can be reported with an additional cost of O(L) where L is
the complexity of the output path.

5. Conclusion

We presented an algorithm to preprocess the input polygon in O(n2
+ nK ) time and space to answer the queries to

find the shortest distance between two given points constrained to view a query point in logarithmic time, where K is
a parameter dependent on the input polygon which is O(n2) in the worst case, but O(n) for most input polygons. In
particular, we studied the behavior of the optimal contact point over a rotating segment. An extension to this problem
is to consider the query not just a point, but another geometric object like a segment. For a segment, the algorithm can
still work considering the appropriate window from the weak visibility polygon of the segment. For more complex
objects like a polygon, the challenge is to find the appropriate window from the visibility polygon. Once the window
is computed, the rest of the algorithm is similar to that of a point. Another possible extension is to require the path
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Fig. A.1. The construction for the first two points in U . The angles spanned by the heavy directed arcs indicate the amount of sweep required for
the first and second interval events.

to visit a query polygon (not necessarily a visibility polygon). If we fix the shape of the query polygon and allow
translation and rotations inside the input polygon, then we can use the results of this paper for tracking the optimal
contact point on a rotating segment.

Appendix. Constructing funnels with Θ(n2) interval events

In this appendix, we show how to construct two funnels Fs and Ft over a window w = ab such that the number
of interval events is Θ(n2) where n is the total number of vertices in both funnels. Let a be the reflex vertex of the
window over which the funnels are built. We assume a polar coordinate system with a as the origin. Without loss of
generality, we may assume the polar angle of b is zero (this may be fixed using a rotation transformation).

We first show how to place the sequence of vertices U = (u1, u2, . . . , uk) of the funnel Fs such that the optimal
curve intersects an extension segment of Ft (like v j zt

j ) in Θ(k) points. To start with a simple case, assume the
extension segment v j zt

j is perpendicular to w and ` is the line supporting the extension segment and both x and y
coordinates of v j are positive (Fig. A.1).

Imagine we have such a placement. So, the curves C1 j , C2 j , . . . , Ck j intersect ` in a sequence of points ordered in
decreasing distance to v j (since they are formed by a radial sweep). To characterize the intersection points, observe
that as the sweep window rotates around a, ui (ui reflected about the window) moves on an arc Ai of the circle Circi
centered at a and passing through ui . Ai starts at angle −θi and spans an angular interval of size twice the total sweep
interval. It can be easily checked that the intersections between ` and Ci j correspond to the intersections between `

and Ai which is at most two. We call an intersection between ` and Circi a low intersection if it happens in negative y
half-plane and a high intersection otherwise. Let γi be the polar angle of the high intersection of ` and Circi . The low
intersection will have −γi polar angle.

To keep the optimal curve continuous, the intersection points on ` must alternate between low and high types.
Assuming the first intersection is low, it happens when the polar angle of u1 is −γ1. This happens at sweep angle
θ1 − γ1. The sequence of intersections continues as the angle of u2 becomes γ2, the angle of u3 becomes −γ3 and so
on. The sequence of sweep angles of the intersections will be (θ1 − γ1, θ2 + γ2, θ3 − γ3, . . .). Since the sequence is in
increasing order, we have:

θ2 − θ1 > −(γ1 + γ2)

θ3 − θ2 > γ2 + γ3

θ4 − θ3 > −(γ3 + γ4)

...



R. Khosravi, M. Ghodsi / Theoretical Computer Science 389 (2007) 1–11 11

Assuming d is the distance from a to the line `, choose r1 as d + εr where εr is a small positive number (we will
provide comments on how small it should be). Let ri be ri−1 + εr for 1 < i ≤ k. Set θ1 = γ1 + εθ . Again, εθ is a
small positive number. To compute θi from θi−1, we face two constraints: one that is imposed by the structure of the
funnel (outward convexity of the two parts of the boundary), and one imposed from the above inequalities. We add
the minimum amount required to satisfy both constraints to θi−1. The only problem is that adding the amounts caused
by the inequalities when computing θi for odd values of i , causes the computed angles to quickly increase until the
y-coordinates of θi becomes less than θi−1. At this point the sequence fails to form the funnel shape. This can be
solved by choosing εr small enough, making γi values small accordingly.

The sequence U computed above forms one part of the boundary of Fs . The other part is not necessary to create
and we can connect uk to b directly. To construct the funnel Ft , we put two vertices v1 and v2 with equal x coordinates
such that the construction of the vertices in U can be done regarding ` as the line supporting v1v2. Then we add the
vertices v3, v4, . . . , vl towards positive x coordinates such that all the extension segments v j zt

j are as close enough to
` so every curve C1 j , C2 j , . . . , Ck j intersects v j zt

j in θ(k) points alternating between low and high types.
This way, the curves contributed to C∗ will be C11, C12, . . . , C1l , C21, . . . , Ckl . So, it is possible to have cases in

which there are θ(n2) interval events for a reflex vertex.
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